Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Crit Care Med ; 49(10): 1651-1663, 2021 10 01.
Article in English | MEDLINE | ID: mdl-33938716

ABSTRACT

OBJECTIVES: Host gene expression signatures discriminate bacterial and viral infection but have not been translated to a clinical test platform. This study enrolled an independent cohort of patients to describe and validate a first-in-class host response bacterial/viral test. DESIGN: Subjects were recruited from 2006 to 2016. Enrollment blood samples were collected in an RNA preservative and banked for later testing. The reference standard was an expert panel clinical adjudication, which was blinded to gene expression and procalcitonin results. SETTING: Four U.S. emergency departments. PATIENTS: Six-hundred twenty-three subjects with acute respiratory illness or suspected sepsis. INTERVENTIONS: Forty-five-transcript signature measured on the BioFire FilmArray System (BioFire Diagnostics, Salt Lake City, UT) in ~45 minutes. MEASUREMENTS AND MAIN RESULTS: Host response bacterial/viral test performance characteristics were evaluated in 623 participants (mean age 46 yr; 45% male) with bacterial infection, viral infection, coinfection, or noninfectious illness. Performance of the host response bacterial/viral test was compared with procalcitonin. The test provided independent probabilities of bacterial and viral infection in ~45 minutes. In the 213-subject training cohort, the host response bacterial/viral test had an area under the curve for bacterial infection of 0.90 (95% CI, 0.84-0.94) and 0.92 (95% CI, 0.87-0.95) for viral infection. Independent validation in 209 subjects revealed similar performance with an area under the curve of 0.85 (95% CI, 0.78-0.90) for bacterial infection and 0.91 (95% CI, 0.85-0.94) for viral infection. The test had 80.1% (95% CI, 73.7-85.4%) average weighted accuracy for bacterial infection and 86.8% (95% CI, 81.8-90.8%) for viral infection in this validation cohort. This was significantly better than 68.7% (95% CI, 62.4-75.4%) observed for procalcitonin (p < 0.001). An additional cohort of 201 subjects with indeterminate phenotypes (coinfection or microbiology-negative infections) revealed similar performance. CONCLUSIONS: The host response bacterial/viral measured using the BioFire System rapidly and accurately discriminated bacterial and viral infection better than procalcitonin, which can help support more appropriate antibiotic use.


Subject(s)
Bacterial Infections/diagnosis , Clinical Laboratory Techniques/standards , Transcriptome , Virus Diseases/diagnosis , Adult , Bacterial Infections/genetics , Biomarkers/analysis , Biomarkers/blood , Clinical Laboratory Techniques/methods , Clinical Laboratory Techniques/statistics & numerical data , Emergency Service, Hospital/organization & administration , Emergency Service, Hospital/statistics & numerical data , Female , Humans , Male , Middle Aged , Virus Diseases/genetics
2.
J Infect Dis ; 222(Suppl 2): S84-S95, 2020 07 21.
Article in English | MEDLINE | ID: mdl-32691839

ABSTRACT

BACKGROUND: Critical illness such as sepsis is a life-threatening syndrome defined as a dysregulated host response to infection and is characterized by patients exhibiting impaired immune response. In the field of diagnosis, a gap still remains in identifying the immune profile of critically ill patients in the intensive care unit (ICU). METHODS: A new multiplex immune profiling panel (IPP) prototype was assessed for its ability to semiquantify messenger RNA immune-related markers directly from blood, using the FilmArray System, in less than an hour. Samples from 30 healthy volunteers were used for the technical assessment of the IPP tool. Then the tool was clinically assessed using samples from 10 healthy volunteers and 20 septic shock patients stratified using human leukocyte antigen-DR expression on monocytes (mHLA-DR). RESULTS: The IPP prototype consists of 16 biomarkers that target the immune response. The majority of the assays had a linear expression with different RNA inputs and a coefficient of determination (R2) > 0.8. Results from the IPP pouch were comparable to standard quantitative polymerase chain reaction and the assays were within the limits of agreement in Bland-Altman analysis. Quantification cycle values of the target genes were normalized against reference genes and confirmed to account for the different cell count and technical variability. The clinical assessment of the IPP markers demonstrated various gene modulations that could distinctly differentiate 3 profiles: healthy volunteers, intermediate mHLA-DR septic shock patients, and low mHLA-DR septic shock patients. CONCLUSIONS: The use of IPP showed great potential for the development of a fully automated, rapid, and easy-to-use immune profiling tool. The IPP tool may be used in the future to stratify critically ill patients in the ICU according to their immune status. Such stratification will enable personalized management of patients and guide treatments to avoid secondary infections and lower mortality.


Subject(s)
Critical Illness , Immunologic Tests , Shock, Septic/diagnosis , Shock, Septic/immunology , Aged , Biomarkers/blood , Female , HLA-DR Antigens/genetics , HLA-DR Antigens/immunology , Humans , Male , Middle Aged , Monocytes/immunology , Multiplex Polymerase Chain Reaction , Proof of Concept Study
3.
J Mol Diagn ; 16(3): 305-13, 2014 May.
Article in English | MEDLINE | ID: mdl-24607271

ABSTRACT

Extension rates of a thermostable, deletion-mutant polymerase were measured from 50°C to 90°C using a fluorescence activity assay adapted for real-time PCR instruments. Substrates with a common hairpin (6-base loop and a 14-bp stem) were synthesized with different 10-base homopolymer tails. Rates for A, C, G, T, and 7-deaza-G incorporation at 75°C were 81, 150, 214, 46, and 120 seconds(-1). Rates for U were half as fast as T and did not increase with increasing concentration. Hairpin substrates with 25-base tails from 0% to 100% GC content had maximal extension rates near 60% GC and were predicted from the template sequence and mononucleotide incorporation rates to within 30% for most sequences. Addition of dimethyl sulfoxide at 7.5% increased rates to within 1% to 17% of prediction for templates with 40% to 90% GC. When secondary structure was designed into the template region, extension rates decreased. Oligonucleotide probes reduced extension rates by 65% (5'-3' exo-) and 70% (5'-3' exo+). When using a separate primer and a linear template to form a polymerase substrate, rates were dependent on both the primer melting temperature (Tm) and the annealing/extension temperature. Maximum rates were observed from Tm to Tm - 5°C with little extension by Tm + 5°C. Defining the influence of sequence and temperature on polymerase extension will enable more rapid and efficient PCR.


Subject(s)
DNA Primers/chemistry , DNA Primers/metabolism , DNA-Directed DNA Polymerase/metabolism , Base Composition , Base Sequence , Enzyme Activation , Molecular Sequence Data , Polymerase Chain Reaction , Protein Stability , Temperature , Transition Temperature
4.
Clin Chem ; 60(2): 334-40, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24081987

ABSTRACT

BACKGROUND: Radioactive DNA polymerase activity methods are cumbersome and do not provide initial extension rates. A simple extension rate assay would enable study of basic assumptions about PCR and define the limits of rapid PCR. METHODS: A continuous assay that monitors DNA polymerase extension using noncovalent DNA dyes on common real-time PCR instruments was developed. Extension rates were measured in nucleotides per second per molecule of polymerase. To initiate the reaction, a nucleotide analog was heat activated at 95 °C for 5 min, the temperature decreased to 75 °C, and fluorescence monitored until substrate exhaustion in 30-90 min. RESULTS: The assay was linear with time for over 40% of the reaction and for polymerase concentrations over a 100-fold range (1-100 pmol/L). Extension rates decreased continuously with increasing monovalent cation concentrations (lithium, sodium, potassium, cesium, and ammonium). Melting-temperature depressors had variable effects. DMSO increased rates up to 33%, whereas glycerol had little effect. Betaine, formamide, and 1,2-propanediol decreased rates with increasing concentrations. Four common noncovalent DNA dyes inhibited polymerase extension. Heat-activated nucleotide analogs were 92% activated after 5 min, and hot start DNA polymerases were 73%-90% activated after 20 min. CONCLUSIONS: Simple DNA extension rate assays can be performed on real-time PCR instruments. Activity is decreased by monovalent cations, DNA dyes, and most melting temperature depressors. Rational inclusion of PCR components on the basis of their effects on polymerase extension is likely to be useful in PCR, particularly rapid-cycle or fast PCR.


Subject(s)
DNA-Directed DNA Polymerase/analysis , DNA/chemistry , Fluorescent Dyes/chemistry , Real-Time Polymerase Chain Reaction/instrumentation , Real-Time Polymerase Chain Reaction/methods , Cations, Monovalent/chemistry , Hot Temperature , Indicators and Reagents , Time Factors
5.
Anal Biochem ; 441(2): 133-9, 2013 Oct 15.
Article in English | MEDLINE | ID: mdl-23872003

ABSTRACT

DNA polymerase activity was measured by a stopped-flow assay that monitors polymerase extension using an intercalating dye. Double-stranded DNA formation during extension of a hairpin substrate was monitored at 75°C for 2 min. Rates were determined in nucleotides per second per molecule of polymerase (nt/s) and were linear with time and polymerase concentration from 1 to 50 nM. The concentrations of 15 available polymerases were quantified and their extension rates determined in 50 mM Tris, pH 8.3, 0.5 mg/ml BSA, 2 mM MgCl2, and 200 µM each dNTP as well as their commercially recommended buffers. Native Taq polymerases had similar extension rates of 10-45 nt/s. Three alternative polymerases showed faster speeds, including KOD (76 nt/s), Klentaq I (101 nt/s), and KAPA2G (155 nt/s). Fusion polymerases including Herculase II and Phusion were relatively slow (3-13 nt/s). The pH optimum for Klentaq extension was between 8.5 and 8.7 with no effect of Tris concentration. Activity was directly correlated to the MgCl2 concentration and inversely correlated to the KCl concentration. This continuous assay is relevant to PCR and provides accurate measurement of polymerase activity using a defined template without the need of radiolabeled substrates.


Subject(s)
DNA-Directed DNA Polymerase/metabolism , Enzyme Assays/methods , DNA/metabolism , Fluorescence , Nucleotides/metabolism
6.
Clin Chem ; 59(7): 1052-61, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23503723

ABSTRACT

BACKGROUND: High-resolution melting of PCR products is an efficient and analytically sensitive method to scan for sequence variation, but detected variants must still be identified. Snapback primer genotyping uses a 5' primer tail complementary to its own extension product to genotype the resulting hairpin via melting. If the 2 methods were combined to analyze the same PCR product, the residual sequencing burden could be reduced or even eliminated. METHODS: The 27 exons and neighboring splice sites of the CFTR [cystic fibrosis transmembrane conductance regulator (ATP-binding cassette sub-family C, member 7)] gene were amplified by the PCR in 39 fragments. Primers included snapback tails for genotyping 7 common variants and the 23 CFTR mutations recommended for screening by the American College of Medical Genetics. After symmetric PCR, the amplicons were analyzed by high-resolution melting to scan for variants. Then, a 5-fold excess of H2O was added to each reaction to produce intramolecular hairpins for snapback genotyping by melting. Each melting step required <10 min. Of the 133 DNA samples analyzed, 51 were from CFTR patient samples or cell lines. RESULTS: As expected, the analytical sensitivity of heterozygote detection in blinded studies was 100%. Snapback genotyping reduced the need for sequencing from 7.9% to 0.5% of PCR products; only 1 amplicon every 5 patients required sequencing to identify nonanticipated rare variants. We identified 2 previously unreported variants: c.3945A>G and c.4243-5C>T. CONCLUSIONS: CFTR analysis by sequential scanning and genotyping with snapback primers is a good match for targeted clinical genetics, for which high analytical accuracy and rapid turnaround times are important.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator/genetics , DNA Primers , Cell Line, Tumor , Cystic Fibrosis/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Genotype , Humans , Mutation , Polymerase Chain Reaction/methods , Polymorphism, Genetic
7.
Expert Rev Mol Diagn ; 10(2): 219-40, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20214540

ABSTRACT

Among nucleic acid analytical methods, high-resolution melting analysis is gaining more and more attention. High-resolution melting provides simple, homogeneous solutions for variant scanning and genotyping, addressing the needs of today's overburdened laboratories with rapid turnaround times and minimal cost. The flexibility of the technique has allowed it to be adopted by a wide range of disciplines for a variety of applications. In this review we examine the broad use of high-resolution melting analysis, including gene scanning, genotyping (including small amplicon, unlabeled probe and snapback primers), sequence matching and methylation analysis. Four major application arenas are examined to demonstrate the methods and approaches commonly used in particular fields. The appropriate usage of high-resolution melting analysis is discussed in the context of known constraints, such as sample quality and quantity, with a particular focus placed on proper experimental design in order to produce successful results.


Subject(s)
DNA/chemistry , Genotype , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...