Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Int ; 167: 107407, 2022 09.
Article in English | MEDLINE | ID: mdl-35850080

ABSTRACT

BACKGROUND: Over one-third of the U.S. population is exposed to unsafe levels of ozone (O3). Dietary supplementation with fish oil (FO) or olive oil (OO) has shown protection against other air pollutants. This study evaluates potential cardiopulmonary benefits of FO or OO supplementation against acute O3 exposure in young healthy adults. METHODS: Forty-three participants (26 ± 4 years old; 47% female) were randomized to receive 3 g/day of FO, 3 g/day OO, or no supplementation (CTL) for 4 weeks prior to undergoing 2-hour exposures to filtered air and 300 ppb O3 with intermittent exercise on two consecutive days. Outcome measurements included spirometry, sputum neutrophil percentage, blood markers of inflammation, tissue injury and coagulation, vascular function, and heart rate variability. The effects of dietary supplementation and O3 on these outcomes were evaluated with linear mixed-effect models. RESULTS: Compared with filtered air, O3 exposure decreased FVC, FEV1, and FEV1/FVC immediately post exposure regardless of supplementation status. Relative to that in the CTL group, the lung function response to O3 exposure in the FO group was blunted, as evidenced by O3-induced decreases in FEV1 (Normalized CTL -0.40 ± 0.34 L, Normalized FO -0.21 ± 0.27 L) and FEV1/FVC (Normalized CTL -4.67 ± 5.0 %, Normalized FO -1.4 ± 3.18 %) values that were on average 48% and 70% smaller, respectively. Inflammatory responses measured in the sputum immediately post O3 exposure were not different among the three supplementation groups. Systolic blood pressure elevations 20-h post O3 exposure were blunted by OO supplementation. CONCLUSION: FO supplementation appears to offer protective effects against lung function decrements caused by acute O3 exposure in healthy adults.


Subject(s)
Air Pollutants , Ozone , Air Pollutants/pharmacology , Female , Fish Oils/pharmacology , Humans , Lung , Male , Ozone/adverse effects , Respiratory Function Tests
2.
Part Fibre Toxicol ; 11: 37, 2014 Sep 02.
Article in English | MEDLINE | ID: mdl-25178924

ABSTRACT

The potential effects of combinations of dilute whole diesel exhaust (DE) and ozone (O3), each a common component of ambient airborne pollutant mixtures, on lung function were examined. Healthy young human volunteers were exposed for 2 hr to pollutants while exercising (~50 L/min) intermittently on two consecutive days. Day 1 exposures were either to filtered air, DE (300 µg/m³), O3 (0.300 ppm), or the combination of both pollutants. On Day 2 all exposures were to O3 (0.300 ppm), and Day 3 served as a followup observation day. Lung function was assessed by spirometry just prior to, immediately after, and up to 4 hr post-exposure on each exposure day. Functional pulmonary responses to the pollutants were also characterized based on stratification by glutathione S-transferase mu 1 (GSTM1) genotype. On Day 1, exposure to air or DE did not change FEV1 or FVC in the subject population (n = 15). The co-exposure to O3 and DE decreased FEV1 (17.6%) to a greater extent than O3 alone (9.9%). To test for synergistic exposure effects, i.e., in a greater than additive fashion, FEV1 changes post individual O3 and DE exposures were summed together and compared to the combined DE and O3 exposure; the p value was 0.057. On Day 2, subjects who received DE exposure on Day 1 had a larger FEV1 decrement (14.7%) immediately after the O3 exposure than the individuals' matched response following a Day 1 air exposure (10.9%). GSTM1 genotype did not affect the magnitude of lung function changes in a significant fashion. These data suggest that altered respiratory responses to the combination of O3 and DE exposure can be observed showing a greater than additive manner. In addition, O3-induced lung function decrements are greater with a prior exposure to DE compared to a prior exposure to filtered air. Based on the joint occurrence of these pollutants in the ambient environment, the potential exists for interactions in more than an additive fashion affecting lung physiological processes.


Subject(s)
Air Pollutants/toxicity , Inhalation Exposure/adverse effects , Lung Diseases/chemically induced , Lung/drug effects , Oxidants, Photochemical/toxicity , Ozone/toxicity , Vehicle Emissions/toxicity , Adult , Bicycling , Biomarkers/blood , Cross-Over Studies , Drug Synergism , Female , Follow-Up Studies , Forced Expiratory Volume/drug effects , Genetic Association Studies , Glutathione Transferase/blood , Glutathione Transferase/genetics , Humans , Lung/physiopathology , Lung Diseases/blood , Lung Diseases/genetics , Lung Diseases/physiopathology , Male , Single-Blind Method , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...