Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Mar Pollut Bull ; 205: 116680, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38981193

ABSTRACT

The sedimentation of organic carbon in the Ulleung Basin, in the southwestern East Sea (Japan Sea) was investigated using radiocarbon and sterols. The accumulation rates of organic carbon and the contents of brassicasterol and dinosterol were higher on the slope than in the central basin, reflecting the surface water productivity, whereas cholesterol showed similar or higher contents in the central basin. The coprostanol concentration in surface sediments reflected the dispersion of sewage dumped in this region. The vertical distribution showed that the coprostanol concentration was the highest in the top 5-cm layer near the Korea Strait, close to one of the two dumping sites. A high coprostanol concentration was also found near the coast further north, where the content peaked at ∼10 cm depth. The vertical distribution of coprostanol helped to estimate the sediment accumulation rate at sites where radiocarbon gradient was too small or the values were too variable.

2.
Environ Sci Technol ; 55(15): 10852-10861, 2021 08 03.
Article in English | MEDLINE | ID: mdl-34275289

ABSTRACT

Estuaries are action zones for organic carbon (OC) degradation and aging. These processes influence the nature of terrestrial OC (OCterr) export and the magnitude of OCterr burial in marginal seas, with important environmental implications such as CO2 release and hypoxia. In this study, we determined the contents and carbon isotopic compositions (13C and 14C) of bulk OC and fatty acids (FAs) as well as the sedimentological characteristics of suspended particulate matter (SPM) samples collected from two sites over four seasons and of surface sediment samples from three sites in the Pearl River estuary (PRE) to evaluate processes controlling OCterr degradation and aging along an estuarine gradient. We found that the abundance-weighted average C24-32FA 14C ages increased by an average of ∼1170 years for SPM and by an average of ∼3440 years in PR/PRE sediments, along the ∼60 km PRE transect. These increases in the FA age coincided with an 86% decrease in the corresponding mineral surface area-normalized FA loading along the sediment transport pathway, implying that selective degradation of labile and younger OC resulted in apparent OC aging. These measurements reveal an important shift in the nature of OC, with implications for biogeochemical cycling within estuaries and for regional environmental changes.


Subject(s)
Estuaries , Water Pollutants, Chemical , Carbon/analysis , Environmental Monitoring , Geologic Sediments , Rivers , Water Pollutants, Chemical/analysis
3.
Proc Natl Acad Sci U S A ; 118(8)2021 02 23.
Article in English | MEDLINE | ID: mdl-33593902

ABSTRACT

Terrestrial vegetation and soils hold three times more carbon than the atmosphere. Much debate concerns how anthropogenic activity will perturb these surface reservoirs, potentially exacerbating ongoing changes to the climate system. Uncertainties specifically persist in extrapolating point-source observations to ecosystem-scale budgets and fluxes, which require consideration of vertical and lateral processes on multiple temporal and spatial scales. To explore controls on organic carbon (OC) turnover at the river basin scale, we present radiocarbon (14C) ages on two groups of molecular tracers of plant-derived carbon-leaf-wax lipids and lignin phenols-from a globally distributed suite of rivers. We find significant negative relationships between the 14C age of these biomarkers and mean annual temperature and precipitation. Moreover, riverine biospheric-carbon ages scale proportionally with basin-wide soil carbon turnover times and soil 14C ages, implicating OC cycling within soils as a primary control on exported biomarker ages and revealing a broad distribution of soil OC reactivities. The ubiquitous occurrence of a long-lived soil OC pool suggests soil OC is globally vulnerable to perturbations by future temperature and precipitation increase. Scaling of riverine biospheric-carbon ages with soil OC turnover shows the former can constrain the sensitivity of carbon dynamics to environmental controls on broad spatial scales. Extracting this information from fluvially dominated sedimentary sequences may inform past variations in soil OC turnover in response to anthropogenic and/or climate perturbations. In turn, monitoring riverine OC composition may help detect future climate-change-induced perturbations of soil OC turnover and stocks.


Subject(s)
Carbon/analysis , Carbon/metabolism , Ecosystem , Geologic Sediments/analysis , Rivers/chemistry , Soil/chemistry , Atmosphere , Carbon Cycle , Carbon Sequestration , Climate , Temperature
4.
Environ Sci Technol ; 53(3): 1119-1129, 2019 02 05.
Article in English | MEDLINE | ID: mdl-30624054

ABSTRACT

Natural and human-induced hydrological changes can influence organic carbon (OC) composition in fluvial systems, with biogeochemical consequences in both terrestrial and marine environments. Here, we use bulk and molecular carbon isotopes (13C and 14C) to examine spatiotemporal variations in particulate OC (POC) composition and age from two locations along the course of the Yellow River during 2015 and 2016. Dual carbon isotopes enable deconvolution of modern, pre-aged (millennial age) soil, and fossil inputs, revealing heterogeneous OC sources at both sites. Pre-aged OC predominated at the upstream site (Huayuankou) throughout the study period, mostly reflecting the upper riverine OC. Strong downstream (Kenli) intra-annual variations in modern and pre-aged OC were caused by increased contributions from modern aquatic OC production under the drier and less turbid conditions during this El Niño year. The month of July, which included the human-induced water and sediment regulation (WSR) event at Kenli, accounted for 82% of annual POC flux, with lower modern OC contribution compared with periods of natural seasonal variability. Both natural and human-induced hydrological events clearly exert strong influence on both fluxes and composition of Yellow River POC which, in turn, affect the balance between OC remineralization and burial for this major fluvial system.


Subject(s)
Carbon , Geologic Sediments , Carbon Isotopes , Humans , Hydrology , Rivers
5.
Proc Natl Acad Sci U S A ; 110(35): 14168-73, 2013 Aug 27.
Article in English | MEDLINE | ID: mdl-23940354

ABSTRACT

Mobilization of Arctic permafrost carbon is expected to increase with warming-induced thawing. However, this effect is challenging to assess due to the diverse processes controlling the release of various organic carbon (OC) pools from heterogeneous Arctic landscapes. Here, by radiocarbon dating various terrestrial OC components in fluvially and coastally integrated estuarine sediments, we present a unique framework for deconvoluting the contrasting mobilization mechanisms of surface vs. deep (permafrost) carbon pools across the climosequence of the Eurasian Arctic. Vascular plant-derived lignin phenol (14)C contents reveal significant inputs of young carbon from surface sources whose delivery is dominantly controlled by river runoff. In contrast, plant wax lipids predominantly trace ancient (permafrost) OC that is preferentially mobilized from discontinuous permafrost regions, where hydrological conduits penetrate deeper into soils and thermokarst erosion occurs more frequently. Because river runoff has significantly increased across the Eurasian Arctic in recent decades, we estimate from an isotopic mixing model that, in tandem with an increased transfer of young surface carbon, the proportion of mobilized terrestrial OC accounted for by ancient carbon has increased by 3-6% between 1985 and 2004. These findings suggest that although partly masked by surface carbon export, climate change-induced mobilization of old permafrost carbon is well underway in the Arctic.

SELECTION OF CITATIONS
SEARCH DETAIL
...