Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Microorganisms ; 10(10)2022 Oct 11.
Article in English | MEDLINE | ID: mdl-36296278

ABSTRACT

Mine tailings are produced by mining activities and contain diverse heavy metal ions, which cause environmental problems and have negative impacts on ecosystems. Different microorganisms, including yeasts, play important roles in the absorption and/or adsorption of these heavy metal ions. This work aimed to analyze proteins synthesized by the yeast Yarrowia lipolytica AMJ6 (Yl-AMJ6), isolated from Andean mine tailings in Peru and subjected to stress conditions with common heavy metal ions. Yeast strains were isolated from high Andean water samples impacted by mine tailings from Yanamate (Pasco, Peru). Among all the isolated yeasts, the Yl-AMJ6 strain presented LC50 values of 1.06 mM, 1.42 mM, and 0.49 mM for the Cr+6, Cu+2, and Cd+2 ions, respectively. Proteomic analysis of theYl-AMJ6 strain under heavy metal stress showed that several proteins were up- or downregulated. Biological and functional analysis of these proteins showed that they were involved in the metabolism of proteins, nucleic acids, and carbohydrates; response to oxidative stress and protein folding; ATP synthesis and ion transport; membrane and cell wall; and cell division. The most prominent proteins that presented the greatest changes were related to the oxidative stress response and carbohydrate metabolism, suggesting the existence of a defense mechanism in these yeasts to resist the impact of environmental contamination by heavy metal ions.

2.
J Proteomics ; 258: 104530, 2022 04 30.
Article in English | MEDLINE | ID: mdl-35182786

ABSTRACT

Snake envenomation is a common but neglected disease that affects millions of people around the world annually. Among venomous snake species in Brazil, the tropical rattlesnake (Crotalus durissus terrificus) accounts for the highest number of fatal envenomations and is responsible for the second highest number of bites. Snake venoms are complex secretions which, upon injection, trigger diverse physiological effects that can cause significant injury or death. The components of C. d. terrificus venom exhibit neurotoxic, myotoxic, hemotoxic, nephrotoxic, and cardiotoxic properties which present clinically as alteration of central nervous system function, motor paralysis, seizures, eyelid ptosis, ophthalmoplesia, blurred vision, coagulation disorders, rhabdomyolysis, myoglobinuria, and cardiorespiratory arrest. In this study, we focused on proteomic characterization of the cardiotoxic effects of C. d. terrificus venom in mouse models. We injected venom at half the lethal dose (LD50) into the gastrocnemius muscle. Mouse hearts were removed at set time points after venom injection (1 h, 6 h, 12 h, or 24 h) and subjected to trypsin digestion prior to high-resolution mass spectrometry. We analyzed the proteomic profiles of >1300 proteins and observed that several proteins showed noteworthy changes in their quantitative profiles, likely reflecting the toxic activity of venom components. Among the affected proteins were several associated with cellular deregulation and tissue damage. Changes in heart protein abundance offer insights into how they may work synergistically upon envenomation. SIGNIFICANCE: Venom of the tropical rattlesnake (Crotalus durissus terririficus) is known to be neurotoxic, myotoxic, nephrotoxic and cardiotoxic. Although there are several studies describing the biochemical effects of this venom, no work has yet described its proteomic effects in the cardiac tissue of mice. In this work, we describe the changes in several mouse cardiac proteins upon venom treatment. Our data shed new light on the clinical outcome of the envenomation by C. d. terrificus, as well as candidate proteins that could be investigated in efforts to improve current treatment approaches or in the development of novel therapeutic interventions in order to reduce mortality and morbidity resulting from envenomation.


Subject(s)
Crotalid Venoms , Neurotoxicity Syndromes , Snake Bites , Animals , Crotalid Venoms/chemistry , Crotalus/metabolism , Humans , Mice , Proteins/metabolism , Proteomics , Snake Bites/therapy
3.
Microorganisms ; 10(1)2022 Jan 14.
Article in English | MEDLINE | ID: mdl-35056621

ABSTRACT

The secretion of α-hemolysin by uropathogenic Escherichia coli (UPEC) is commonly associated with the severity of urinary tract infections, which makes it a predictor of poor prognosis among patients. Accordingly, this toxin has become a target for diagnostic tests and therapeutic interventions. However, there are several obstacles associated with the process of α-hemolysin purification, therefore limiting its utilization in scientific investigations. In order to overcome the problems associated with α-hemolysin expression, after in silico prediction, a 20.48 kDa soluble α-hemolysin recombinant denoted rHlyA was constructed. This recombinant is composed by a 182 amino acid sequence localized in the aa542-723 region of the toxin molecule. The antigenic determinants of the rHlyA were estimated by bioinformatics analysis taking into consideration the tertiary form of the toxin, epitope analysis tools, and solubility inference. The results indicated that rHlyA has three antigenic domains localized in the aa555-565, aa600-610, and aa674-717 regions. Functional investigation of rHlyA demonstrated that it has hemolytic activity against sheep red cells, but no cytotoxic effect against epithelial bladder cells. In summary, the results obtained in this study indicate that rHlyA is a soluble recombinant protein that can be used as a tool in studies that aim to understand the mechanisms involved in the hemolytic and cytotoxic activities of α-hemolysin produced by UPEC. In addition, rHlyA can be applied to generate monoclonal and/or polyclonal antibodies that can be utilized in the development of diagnostic tests and therapeutic interventions.

4.
Microorganisms, v. 10, 2002, out. 2022
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4661

ABSTRACT

Mine tailings are produced by mining activities and contain diverse heavy metal ions, which cause environmental problems and have negative impacts on ecosystems. Different microorganisms, including yeasts, play important roles in the absorption and/or adsorption of these heavy metal ions. This work aimed to analyze proteins synthesized by the yeast Yarrowia lipolytica AMJ6 (Yl-AMJ6), isolated from Andean mine tailings in Peru and subjected to stress conditions with common heavy metal ions. Yeast strains were isolated from high Andean water samples impacted by mine tailings from Yanamate (Pasco, Peru). Among all the isolated yeasts, the Yl-AMJ6 strain presented LC50 values of 1.06 mM, 1.42 mM, and 0.49 mM for the Cr+6, Cu+2, and Cd+2 ions, respectively. Proteomic analysis of theYl-AMJ6 strain under heavy metal stress showed that several proteins were up- or downregulated. Biological and functional analysis of these proteins showed that they were involved in the metabolism of proteins, nucleic acids, and carbohydrates; response to oxidative stress and protein folding; ATP synthesis and ion transport; membrane and cell wall; and cell division. The most prominent proteins that presented the greatest changes were related to the oxidative stress response and carbohydrate metabolism, suggesting the existence of a defense mechanism in these yeasts to resist the impact of environmental contamination by heavy metal ions.

5.
J Proteomics, v. 258, 104530, abr. 2022
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4216

ABSTRACT

Snake envenomation is a common but neglected disease that affects millions of people around the world annually. Among venomous snake species in Brazil, the tropical rattlesnake (Crotalus durissus terrificus) accounts for the highest number of fatal envenomations and is responsible for the second highest number of bites. Snake venoms are complex secretions which, upon injection, trigger diverse physiological effects that can cause significant injury or death. The components of C. d. terrificus venom exhibit neurotoxic, myotoxic, hemotoxic, nephrotoxic, and cardiotoxic properties which present clinically as alteration of central nervous system function, motor paralysis, seizures, eyelid ptosis, ophthalmoplesia, blurred vision, coagulation disorders, rhabdomyolysis, myoglobinuria, and cardiorespiratory arrest. In this study, we focused on proteomic characterization of the cardiotoxic effects of C. d. terrificus venom in mouse models. We injected venom at half the lethal dose (LD50) into the gastrocnemius muscle. Mouse hearts were removed at set time points after venom injection (1 h, 6 h, 12 h, or 24 h) and subjected to trypsin digestion prior to high-resolution mass spectrometry. We analyzed the proteomic profiles of >1300 proteins and observed that several proteins showed noteworthy changes in their quantitative profiles, likely reflecting the toxic activity of venom components. Among the affected proteins were several associated with cellular deregulation and tissue damage. Changes in heart protein abundance offer insights into how they may work synergistically upon envenomation. Significance Venom of the tropical rattlesnake (Crotalus durissus terririficus) is known to be neurotoxic, myotoxic, nephrotoxic and cardiotoxic. Although there are several studies describing the biochemical effects of this venom, no work has yet described its proteomic effects in the cardiac tissue of mice. In this work, we describe the changes in several mouse cardiac proteins upon venom treatment. Our data shed new light on the clinical outcome of the envenomation by C. d. terrificus, as well as candidate proteins that could be investigated in efforts to improve current treatment approaches or in the development of novel therapeutic interventions in order to reduce mortality and morbidity resulting from envenomation.

6.
Microorganisms, v. 10, n. 1, 172, jan. 2022
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4105

ABSTRACT

The secretion of α-hemolysin by uropathogenic Escherichia coli (UPEC) is commonly associated with the severity of urinary tract infections, which makes it a predictor of poor prognosis among patients. Accordingly, this toxin has become a target for diagnostic tests and therapeutic interventions. However, there are several obstacles associated with the process of α-hemolysin purification, therefore limiting its utilization in scientific investigations. In order to overcome the problems associated with α-hemolysin expression, after in silico prediction, a 20.48 kDa soluble α-hemolysin recombinant denoted rHlyA was constructed. This recombinant is composed by a 182 amino acid sequence localized in the aa542–723 region of the toxin molecule. The antigenic determinants of the rHlyA were estimated by bioinformatics analysis taking into consideration the tertiary form of the toxin, epitope analysis tools, and solubility inference. The results indicated that rHlyA has three antigenic domains localized in the aa555–565, aa600–610, and aa674–717 regions. Functional investigation of rHlyA demonstrated that it has hemolytic activity against sheep red cells, but no cytotoxic effect against epithelial bladder cells. In summary, the results obtained in this study indicate that rHlyA is a soluble recombinant protein that can be used as a tool in studies that aim to understand the mechanisms involved in the hemolytic and cytotoxic activities of α-hemolysin produced by UPEC. In addition, rHlyA can be applied to generate monoclonal and/or polyclonal antibodies that can be utilized in the development of diagnostic tests and therapeutic interventions.

7.
Toxins (Basel) ; 13(8)2021 07 25.
Article in English | MEDLINE | ID: mdl-34437390

ABSTRACT

Cancer is characterized by the development of abnormal cells that divide in an uncontrolled way and may spread into other tissues where they may infiltrate and destroy normal body tissue. Several previous reports have described biochemical anti-tumorigenic properties of crude snake venom or its components, including their capability of inhibiting cell proliferation and promoting cell death. However, to the best of our knowledge, there is no work describing cancer cell proteomic changes following treatment with snake venoms. In this work we describe the quantitative changes in proteomics of MCF7 and MDA-MB-231 breast tumor cell lines following treatment with Bothrops jararaca snake venom, as well as the functional implications of the proteomic changes. Cell lines were treated with sub-toxic doses at either 0.63 µg/mL (low) or 2.5 µg/mL (high) of B. jararaca venom for 24 h, conditions that cause no cell death per se. Proteomics analysis was conducted on a nano-scale liquid chromatography coupled on-line with mass spectrometry (nLC-MS/MS). More than 1000 proteins were identified and evaluated from each cell line treated with either the low or high dose of the snake venom. Protein profiling upon venom treatment showed differential expression of several proteins related to cancer cell metabolism, immune response, and inflammation. Among the identified proteins we highlight histone H3, SNX3, HEL-S-156an, MTCH2, RPS, MCC2, IGF2BP1, and GSTM3. These data suggest that sub-toxic doses of B. jararaca venom have potential to modulate cancer-development related protein targets in cancer cells. This work illustrates a novel biochemical strategy to identify therapeutic targets against cancer cell growth and survival.


Subject(s)
Breast Neoplasms/metabolism , Crotalid Venoms/pharmacology , Neoplasm Proteins/metabolism , Breast Neoplasms/genetics , Cell Line, Tumor , Cell Survival/drug effects , Gene Expression Regulation, Neoplastic , Gene Ontology , Humans , Neoplasm Proteins/genetics , Protein Interaction Maps , Proteome/drug effects , Proteomics
8.
Fish Shellfish Immunol ; 109: 51-61, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33276094

ABSTRACT

Sea urchins live in a challenging environment that requires rapid and efficient responses against pathogens and invaders. This response may be also important in reproductive processes once males and females release their gametes into water. In addition, the gonads are organs with dual function: reproductive organ and nutrient reserve, therefore it needs efficient protective mechanisms to preserve the nutrients as well as the reproductive cells. The aim of this study was to evaluate the presence and characterize antimicrobial molecules in the male and female gonads of the sea urchin Lytechinus variegatus. Through HPLC purification, antimicrobial activity test and mass spectrometry several antimicrobial molecules were found in the gonads of both gender. Computational in silico analyses showed that they are fragments of a glycoprotein called toposome, also known as major yolk protein (MYP) which is one of the major proteins found in the gonads. Although different functions have been reported for this protein, this is the first description of a direct antimicrobial activity in Lytechinus variegatus. The results indicate that when undergoing proteolysis the toposome generates different fragments with antimicrobial activity which may indicate the importance of a rapid defense response strategy against invading microorganisms in the gonads used by both males and females sea urchins.


Subject(s)
Anti-Infective Agents/immunology , Glycoproteins/genetics , Glycoproteins/immunology , Immunity, Innate/genetics , Lytechinus/genetics , Lytechinus/immunology , Amino Acid Sequence , Animals , Female , Gene Expression Profiling , Glycoproteins/chemistry , Male , Ovary/immunology , Ovary/metabolism , Sequence Alignment , Testis/immunology , Testis/metabolism
9.
Toxins, v. 13, n. 8, 519, jul. 2021
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3919

ABSTRACT

Cancer is characterized by the development of abnormal cells that divide in an uncontrolled way and may spread into other tissues where they may infiltrate and destroy normal body tissue. Several previous reports have described biochemical anti-tumorigenic properties of crude snake venom or its components, including their capability of inhibiting cell proliferation and promoting cell death. However, to the best of our knowledge, there is no work describing cancer cell proteomic changes following treatment with snake venoms. In this work we describe the quantitative changes in proteomics of MCF7 and MDA-MB-231 breast tumor cell lines following treatment with Bothrops jararaca snake venom, as well as the functional implications of the proteomic changes. Cell lines were treated with sub-toxic doses at either 0.63 μg/mL (low) or 2.5 μg/mL (high) of B. jararaca venom for 24 h, conditions that cause no cell death per se. Proteomics analysis was conducted on a nano-scale liquid chromatography coupled on-line with mass spectrometry (nLC-MS/MS). More than 1000 proteins were identified and evaluated from each cell line treated with either the low or high dose of the snake venom. Protein profiling upon venom treatment showed differential expression of several proteins related to cancer cell metabolism, immune response, and inflammation. Among the identified proteins we highlight histone H3, SNX3, HEL-S-156an, MTCH2, RPS, MCC2, IGF2BP1, and GSTM3. These data suggest that sub-toxic doses of B. jararaca venom have potential to modulate cancer-development related protein targets in cancer cells. This work illustrates a novel biochemical strategy to identify therapeutic targets against cancer cell growth and survival.

10.
Fish Shellfish Immunol, v. 109, p. 51-61, fev. 2021
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3379

ABSTRACT

Sea urchins live in a challenging environment that requires rapid and efficient responses against pathogens and invaders. This response may be also important in reproductive processes once males and females release their gametes into water. In addition, the gonads are organs with dual function: reproductive organ and nutrient reserve, therefore it needs efficient protective mechanisms to preserve the nutrients as well as the reproductive cells. The aim of this study was to evaluate the presence and characterize antimicrobial molecules in the male and female gonads of the sea urchin Lytechinus variegatus. Through HPLC purification, antimicrobial activity test and mass spectrometry several antimicrobial molecules were found in the gonads of both gender. Computational in silico analyses showed that they are fragments of a glycoprotein called toposome, also known as major yolk protein (MYP) which is one of the major proteins found in the gonads. Although different functions have been reported for this protein, this is the first description of a direct antimicrobial activity in Lytechinus variegatus. The results indicate that when undergoing proteolysis the toposome generates different fragments with antimicrobial activity which may indicate the importance of a rapid defense response strategy against invading microorganisms in the gonads used by both males and females sea urchins.

11.
J Proteomics ; 221: 103779, 2020 06 15.
Article in English | MEDLINE | ID: mdl-32272218

ABSTRACT

Snake envenomation is responsible for more than 130,000 deaths worldwide. In Brazil, the Crotalus rattlesnake is responsible for the second largest number of accidental snake bites in the country. Although there are many descriptions of the clinical and biochemical effects of Crotalus envenoming, there are few works describing the molecular events in the central nervous system of an organism due to envenomation. In this study, we analyzed the proteomic effect of Crotalus durissus terrificus snake venom on mice cerebellums. To monitor the envenomation over time, changes in the protein abundance were evaluated at 1 h, 6 h, 12 h and 24 h after venom injection by mass spectrometry. The analysis of the variation of over 4600 identified proteins over time showed a reduction in components of inhibitory synapse signaling, oxidative stress, and maintenance of neuronal cells, which paralleled increasing tissue damage and apoptosis factors. These analyses revealed the potential protein targets of the C. d. terrificus venom on the murine cerebellum, showing new aspects of the snake envenomation effect. These data may contribute to new therapeutic approaches (i.e., approaches directed at protein targets affected by the envenomation) on the treatment of envenomation by the neurotoxic C. d. terrificus snake venom. SIGNIFICANCE: Snakebites are a neglected global health problem that affects mostly rural and tropical areas of developing countries. It is estimated that over 5.4 million people are bitten by snakes each year, from which 2.7 million people are bitten by venomous snakes, resulting in disabilities such as amputations and in some cases leading to death. The C. d. terrificus snake is the most lethal snake in Brazil. Studying the molecular changes upon envenomation in a specific tissue may lead to a better understanding of the envenomation process by C. d. terrificus snakebites.


Subject(s)
Crotalid Venoms , Animals , Brazil , Cerebellum , Crotalid Venoms/toxicity , Crotalus , Mice , Proteomics
12.
J. Proteomics ; 221: 103779, 2020.
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib17597

ABSTRACT

Snake envenomation is responsible for more than 130,000 deaths worldwide. In Brazil, the Crotalus rattlesnake is responsible for the second largest number of accidental snake bites in the country. Although there are many descriptions of the clinical and biochemical effects of Crotalus envenoming, there are few works describing the molecular events in the central nervous system of an organism due to envenomation. In this study, we analyzed the proteomic effect of Crotalus durissus terrificus snake venom on mice cerebellums. To monitor the envenomation over time, changes in the protein abundance were evaluated at 1 h, 6 h, 12 h and 24 h after venom injection by mass spectrometry. The analysis of the variation of over 4600 identified proteins over time showed a reduction in components of inhibitory synapse signaling, oxidative stress, and maintenance of neuronal cells, which paralleled increasing tissue damage and apoptosis factors. These analyses revealed the potential protein targets of the C. d. terrificus venom on the murine cerebellum, showing new aspects of the snake envenomation effect. These data may contribute to new therapeutic approaches (i.e., approaches directed at protein targets affected by the envenomation) on the treatment of envenomation by the neurotoxic C. d. terrificus snake venom. Significance Snakebites are a neglected global health problem that affects mostly rural and tropical areas of developing countries. It is estimated that over 5.4 million people are bitten by snakes each year, from which 2.7 million people are bitten by venomous snakes, resulting in disabilities such as amputations and in some cases leading to death. The C. d. terrificus snake is the most lethal snake in Brazil. Studying the molecular changes upon envenomation in a specific tissue may lead to a better understanding of the envenomation process by C. d. terrificus snakebites.

13.
J Proteomics, v. 221, 103779, jun. 2020
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3004

ABSTRACT

Snake envenomation is responsible for more than 130,000 deaths worldwide. In Brazil, the Crotalus rattlesnake is responsible for the second largest number of accidental snake bites in the country. Although there are many descriptions of the clinical and biochemical effects of Crotalus envenoming, there are few works describing the molecular events in the central nervous system of an organism due to envenomation. In this study, we analyzed the proteomic effect of Crotalus durissus terrificus snake venom on mice cerebellums. To monitor the envenomation over time, changes in the protein abundance were evaluated at 1 h, 6 h, 12 h and 24 h after venom injection by mass spectrometry. The analysis of the variation of over 4600 identified proteins over time showed a reduction in components of inhibitory synapse signaling, oxidative stress, and maintenance of neuronal cells, which paralleled increasing tissue damage and apoptosis factors. These analyses revealed the potential protein targets of the C. d. terrificus venom on the murine cerebellum, showing new aspects of the snake envenomation effect. These data may contribute to new therapeutic approaches (i.e., approaches directed at protein targets affected by the envenomation) on the treatment of envenomation by the neurotoxic C. d. terrificus snake venom. Significance Snakebites are a neglected global health problem that affects mostly rural and tropical areas of developing countries. It is estimated that over 5.4 million people are bitten by snakes each year, from which 2.7 million people are bitten by venomous snakes, resulting in disabilities such as amputations and in some cases leading to death. The C. d. terrificus snake is the most lethal snake in Brazil. Studying the molecular changes upon envenomation in a specific tissue may lead to a better understanding of the envenomation process by C. d. terrificus snakebites.

14.
Master thesis. São Paulo: Instituto Butantan; 2019. 84 p.
Thesis in Portuguese | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3600

ABSTRACT

About 2.7 million people are bitten annually by venomous snakes worldwide. Among them, there are more than 130,000 deaths and 490,000 amputations and other serious health problems caused by this type of accident. In Brazil, among the different snakes distributed throughout the country, the snakes of the Crotalus genus known popularly as rattlesnakes is the second largest responsible for accidents in the country only behind the Bothrops genus of snakes known as jararacas. Crotalus snakes venoms are known to be neurotoxic and myotoxic and although there is a wide description of the clinical and biochemical aspects of the effects of Crotalus envenoming, there are few works describing the molecular events in an organism due to its envenomation. Thus, in this study we evaluated the effect of Crotalus durissus terrificus snake venom on cerebellum of Swiss mice after 1, 6, 12 and 24 h after venom injection and evaluated their proteomic effects using high resolution mass spectrometry. Several bioinformatics tools were used to obtain an overview of the variation of over 3,600 identified proteins, different terms and biological functions of the effects of envenomation over the time up to 24 h. We were able to observe a reduction in terms involving inhibitory synapse signaling, oxidative stress, maintenance of neuronal cells, and an increase in terms involving tissue damage and apoptosis factors. This analysis allowed us to reveal possible molecular targets of the venom. These data may suggest new therapeutic approaches (i.e. directed to protein targets initially affected by the envenomation) for the treatment of envenomation by C. d. terrificus venom.


Anualmente, cerca de 2,7 milhões de pessoas sofrem acidentes por serpentes peçonhentas em todo o mundo. Dentre elas, existem relatos de que ocorrem mais de 130.000 mortes e 490.000 amputações e outros problemas graves de saúde causados por este tipo de acidente. No Brasil, dentre as diferentes serpentes distribuídas pelo país, as serpentes do gênero Crotalus, mais conhecida como Cascavel é a segunda maior responsável dos acidentes no país ficando atrás apenas das Bothrops, conhecidas como jararacas. As peçonhas das Crotalus são conhecidamente neurotóxicas e miotóxicas e apesar de existirem uma vasta descrição dos aspectos clínicos e bioquímicos dos efeitos do envenenamento, existem poucos registros descrevendo o envenenamento em um organismo a nível proteômico. Dessa forma, neste estudo avaliamos o efeito da peçonha da serpente Crotalus durissus terrificus em cerebelos de camundongos de linhagem Swiss após 1, 6, 12 e 24 h depois da injeção da peçonha e avaliamos seus efeitos proteômicos usando espectrometria de massas de alta resolução. Diversas ferramentas de bioinformática foram utilizadas para obter uma visualização geral da variação de algumas das 3600 proteínas identificadas, dos diferentes termos e funções biológicas dos efeitos do envenenamento ao longo do tempo até 24 h. Observamos a redução de termos envolvendo sinalização de sinapses inibitórias, stress oxidativo, manutenção de células neuronais e um aumento em termos envolvendo dano tecidual e fatores ligados a apoptose. Essa análise permitiu revelar a nível molecular, possíveis alvos moleculares específicos da peçonha. Esses dados poderão sugerir novas abordagens terapêuticas (i.e. dirigidas aos alvos proteicos inicialmente afetados pelo envenenamento) para o tratamento do envenenamento pela peçonha da C. d. terrificus.

15.
Proteomics ; 18(17): e1800203, 2018 09.
Article in English | MEDLINE | ID: mdl-30035358

ABSTRACT

Fibroblast growth factor 2 (FGF2) is a well-known cell proliferation promoter; however, it can also induce cell cycle arrest. To gain insight into the molecular mechanisms of this antiproliferative effect, for the first time, the early systemic proteomic differences induced by this growth factor in a K-Ras-driven mouse tumor cell line using a quantitative proteomics approach are investigated. More than 2900 proteins are quantified, indicating that terms associated with metabolism, RNA processing, replication, and transcription are enriched among proteins differentially expressed upon FGF2 stimulation. Proteomic trend dynamics indicate that, for proteins mainly associated with DNA replication and carbohydrate metabolism, an FGF2 stimulus delays their abundance changes, whereas FGF2 stimulation accelerates other metabolic programs. Transcription regulatory network analysis indicates master regulators of FGF2 stimulation, including two critical transcription factors, FOSB and JUNB. Their expression dynamics, both in the Y1 cell line (a murine model of adenocarcinoma cells) and in two other human cell lines (SK-N-MC and UM-UC-3) also susceptible to FGF2 antiproliferative effects, are investigated. Both protein expression levels depend on fibroblast growth factor receptor (FGFR) and src signaling. JUNB and FOSB knockdown do not rescue cells from the growth arrest induced by FGF2; however, FOSB knockdown rescue cells from DNA replication delay, indicating that FOSB expression underlies one of the FGF2 antiproliferative effects, namely, S-phase progression delay.


Subject(s)
Adrenal Cortex Neoplasms/metabolism , Adrenocortical Carcinoma/metabolism , Cell Proliferation , Fibroblast Growth Factor 2/pharmacology , Proteome/metabolism , Proto-Oncogene Proteins c-fos/metabolism , Transcription Factors/metabolism , Adrenal Cortex Neoplasms/drug therapy , Adrenal Cortex Neoplasms/pathology , Adrenocortical Carcinoma/drug therapy , Adrenocortical Carcinoma/pathology , Animals , Humans , Mice , Protein Interaction Maps , Proteome/analysis , Proto-Oncogene Proteins p21(ras)/genetics , Signal Transduction , Tumor Cells, Cultured , Urinary Bladder Neoplasms/drug therapy , Urinary Bladder Neoplasms/metabolism , Urinary Bladder Neoplasms/pathology
16.
Proteomics ; 18(17): 1800203, 2018.
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib15799

ABSTRACT

Fibroblast growth factor 2 (FGF2) is a well-known cell proliferation promoter; however, it can also induce cell cycle arrest. To gain insight into the molecular mechanisms of this antiproliferative effect, for the first time, the early systemic proteomic differences induced by this growth factor in a K-Ras-driven mouse tumor cell line using a quantitative proteomics approach are investigated. More than 2900 proteins are quantified, indicating that terms associated with metabolism, RNA processing, replication, and transcription are enriched among proteins differentially expressed upon FGF2 stimulation. Proteomic trend dynamics indicate that, for proteins mainly associated with DNA replication and carbohydrate metabolism, an FGF2 stimulus delays their abundance changes, whereas FGF2 stimulation accelerates other metabolic programs. Transcription regulatory network analysis indicates master regulators of FGF2 stimulation, including two critical transcription factors, FOSB and JUNB. Their expression dynamics, both in the Y1 cell line (a murine model of adenocarcinoma cells) and in two other human cell lines (SK-N-MC and UM-UC-3) also susceptible to FGF2 antiproliferative effects, are investigated. Both protein expression levels depend on fibroblast growth factor receptor (FGFR) and src signaling. JUNB and FOSB knockdown do not rescue cells from the growth arrest induced by FGF2; however, FOSB knockdown rescue cells from DNA replication delay, indicating that FOSB expression underlies one of the FGF2 antiproliferative effects, namely, S-phase progression delay.

17.
Proteomics, v. 18, n. 17, 18002013, jul. 2018
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2657

ABSTRACT

Fibroblast growth factor 2 (FGF2) is a well-known cell proliferation promoter; however, it can also induce cell cycle arrest. To gain insight into the molecular mechanisms of this antiproliferative effect, for the first time, the early systemic proteomic differences induced by this growth factor in a K-Ras-driven mouse tumor cell line using a quantitative proteomics approach are investigated. More than 2900 proteins are quantified, indicating that terms associated with metabolism, RNA processing, replication, and transcription are enriched among proteins differentially expressed upon FGF2 stimulation. Proteomic trend dynamics indicate that, for proteins mainly associated with DNA replication and carbohydrate metabolism, an FGF2 stimulus delays their abundance changes, whereas FGF2 stimulation accelerates other metabolic programs. Transcription regulatory network analysis indicates master regulators of FGF2 stimulation, including two critical transcription factors, FOSB and JUNB. Their expression dynamics, both in the Y1 cell line (a murine model of adenocarcinoma cells) and in two other human cell lines (SK-N-MC and UM-UC-3) also susceptible to FGF2 antiproliferative effects, are investigated. Both protein expression levels depend on fibroblast growth factor receptor (FGFR) and src signaling. JUNB and FOSB knockdown do not rescue cells from the growth arrest induced by FGF2; however, FOSB knockdown rescue cells from DNA replication delay, indicating that FOSB expression underlies one of the FGF2 antiproliferative effects, namely, S-phase progression delay.

SELECTION OF CITATIONS
SEARCH DETAIL
...