Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
Add more filters










Publication year range
1.
Nature ; 621(7980): 857-867, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37730992

ABSTRACT

Speciation leads to adaptive changes in organ cellular physiology and creates challenges for studying rare cell-type functions that diverge between humans and mice. Rare cystic fibrosis transmembrane conductance regulator (CFTR)-rich pulmonary ionocytes exist throughout the cartilaginous airways of humans1,2, but limited presence and divergent biology in the proximal trachea of mice has prevented the use of traditional transgenic models to elucidate ionocyte functions in the airway. Here we describe the creation and use of conditional genetic ferret models to dissect pulmonary ionocyte biology and function by enabling ionocyte lineage tracing (FOXI1-CreERT2::ROSA-TG), ionocyte ablation (FOXI1-KO) and ionocyte-specific deletion of CFTR (FOXI1-CreERT2::CFTRL/L). By comparing these models with cystic fibrosis ferrets3,4, we demonstrate that ionocytes control airway surface liquid absorption, secretion, pH and mucus viscosity-leading to reduced airway surface liquid volume and impaired mucociliary clearance in cystic fibrosis, FOXI1-KO and FOXI1-CreERT2::CFTRL/L ferrets. These processes are regulated by CFTR-dependent ionocyte transport of Cl- and HCO3-. Single-cell transcriptomics and in vivo lineage tracing revealed three subtypes of pulmonary ionocytes and a FOXI1-lineage common rare cell progenitor for ionocytes, tuft cells and neuroendocrine cells during airway development. Thus, rare pulmonary ionocytes perform critical CFTR-dependent functions in the proximal airway that are hallmark features of cystic fibrosis airway disease. These studies provide a road map for using conditional genetics in the first non-rodent mammal to address gene function, cell biology and disease processes that have greater evolutionary conservation between humans and ferrets.


Subject(s)
Cystic Fibrosis , Disease Models, Animal , Ferrets , Lung , Transgenes , Animals , Humans , Animals, Genetically Modified , Cell Lineage , Cystic Fibrosis/genetics , Cystic Fibrosis/metabolism , Cystic Fibrosis/pathology , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Ferrets/genetics , Ferrets/physiology , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , Lung/cytology , Lung/metabolism , Lung/pathology , Trachea/cytology , Transgenes/genetics
2.
Elife ; 122023 04 21.
Article in English | MEDLINE | ID: mdl-37083555

ABSTRACT

Despite advances in high-dimensional cellular analysis, the molecular profiling of dynamic behaviors of cells in their native environment remains a major challenge. We present a method that allows us to couple the physiological behaviors of cells in an intact murine tissue to deep molecular profiling of individual cells. This method enabled us to establish a novel molecular signature for a striking migratory cellular behavior following injury in murine airways.


Subject(s)
Gene Expression Profiling , Transcriptome , Animals , Mice , Single-Cell Analysis/methods
3.
Nat Genet ; 54(10): 1479-1492, 2022 10.
Article in English | MEDLINE | ID: mdl-36175791

ABSTRACT

Genome-wide association studies provide a powerful means of identifying loci and genes contributing to disease, but in many cases, the related cell types/states through which genes confer disease risk remain unknown. Deciphering such relationships is important for identifying pathogenic processes and developing therapeutics. In the present study, we introduce sc-linker, a framework for integrating single-cell RNA-sequencing, epigenomic SNP-to-gene maps and genome-wide association study summary statistics to infer the underlying cell types and processes by which genetic variants influence disease. The inferred disease enrichments recapitulated known biology and highlighted notable cell-disease relationships, including γ-aminobutyric acid-ergic neurons in major depressive disorder, a disease-dependent M-cell program in ulcerative colitis and a disease-specific complement cascade process in multiple sclerosis. In autoimmune disease, both healthy and disease-dependent immune cell-type programs were associated, whereas only disease-dependent epithelial cell programs were prominent, suggesting a role in disease response rather than initiation. Our framework provides a powerful approach for identifying the cell types and cellular processes by which genetic variants influence disease.


Subject(s)
Depressive Disorder, Major , Genome-Wide Association Study , Depressive Disorder, Major/genetics , Genetic Predisposition to Disease , Human Genetics , Humans , Polymorphism, Single Nucleotide/genetics , RNA , gamma-Aminobutyric Acid
4.
bioRxiv ; 2021 Nov 23.
Article in English | MEDLINE | ID: mdl-34845454

ABSTRACT

Genome-wide association studies (GWAS) provide a powerful means to identify loci and genes contributing to disease, but in many cases the related cell types/states through which genes confer disease risk remain unknown. Deciphering such relationships is important for identifying pathogenic processes and developing therapeutics. Here, we introduce sc-linker, a framework for integrating single-cell RNA-seq (scRNA-seq), epigenomic maps and GWAS summary statistics to infer the underlying cell types and processes by which genetic variants influence disease. We analyzed 1.6 million scRNA-seq profiles from 209 individuals spanning 11 tissue types and 6 disease conditions, and constructed gene programs capturing cell types, disease progression, and cellular processes both within and across cell types. We evaluated these gene programs for disease enrichment by transforming them to SNP annotations with tissue-specific epigenomic maps and computing enrichment scores across 60 diseases and complex traits (average N= 297K). Cell type, disease progression, and cellular process programs captured distinct heritability signals even within the same cell type, as we show in multiple complex diseases that affect the brain (Alzheimer’s disease, multiple sclerosis), colon (ulcerative colitis) and lung (asthma, idiopathic pulmonary fibrosis, severe COVID-19). The inferred disease enrichments recapitulated known biology and highlighted novel cell-disease relationships, including GABAergic neurons in major depressive disorder (MDD), a disease progression M cell program in ulcerative colitis, and a disease-specific complement cascade process in multiple sclerosis. In autoimmune disease, both healthy and disease progression immune cell type programs were associated, whereas for epithelial cells, disease progression programs were most prominent, perhaps suggesting a role in disease progression over initiation. Our framework provides a powerful approach for identifying the cell types and cellular processes by which genetic variants influence disease.

6.
Cell Rep ; 35(3): 109011, 2021 04 20.
Article in English | MEDLINE | ID: mdl-33882306

ABSTRACT

Pulmonary neuroendocrine cells (PNECs) have crucial roles in airway physiology and immunity by producing bioactive amines and neuropeptides (NPs). A variety of human diseases exhibit PNEC hyperplasia. Given accumulated evidence that PNECs represent a heterogenous population of cells, we investigate how PNECs differ, whether the heterogeneity is similarly present in mouse and human cells, and whether specific disease involves discrete PNECs. Herein, we identify three distinct types of PNECs in human and mouse airways based on single and double positivity for TUBB3 and the established NP markers. We show that the three PNEC types exhibit significant differences in NP expression, homeostatic turnover, and response to injury and disease. We provide evidence that these differences parallel their distinct cell of origin from basal stem cells (BSCs) or other airway epithelial progenitors.


Subject(s)
Cell Lineage/genetics , Epithelial Cells/pathology , Neuroendocrine Cells/pathology , Stem Cells/pathology , Tubulin/genetics , Animals , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Cell Differentiation , Epithelial Cells/classification , Epithelial Cells/metabolism , Female , Gene Expression Regulation , Humans , Hyperplasia/genetics , Hyperplasia/metabolism , Hyperplasia/pathology , Infant , Influenza A Virus, H1N1 Subtype/growth & development , Influenza A Virus, H1N1 Subtype/pathogenicity , Lung , Male , Mice , Mice, Transgenic , Neuroendocrine Cells/classification , Neuroendocrine Cells/metabolism , Neuropeptides/genetics , Neuropeptides/metabolism , Orthomyxoviridae Infections/genetics , Orthomyxoviridae Infections/metabolism , Orthomyxoviridae Infections/pathology , Orthomyxoviridae Infections/virology , Signal Transduction , Stem Cells/classification , Stem Cells/metabolism , Sudden Infant Death/genetics , Sudden Infant Death/pathology , Transcription Factors/genetics , Transcription Factors/metabolism , Tubulin/metabolism , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism
7.
Nature ; 595(7865): 114-119, 2021 07.
Article in English | MEDLINE | ID: mdl-33915568

ABSTRACT

Respiratory failure is the leading cause of death in patients with severe SARS-CoV-2 infection1,2, but the host response at the lung tissue level is poorly understood. Here we performed single-nucleus RNA sequencing of about 116,000 nuclei from the lungs of nineteen individuals who died of COVID-19 and underwent rapid autopsy and seven control individuals. Integrated analyses identified substantial alterations in cellular composition, transcriptional cell states, and cell-to-cell interactions, thereby providing insight into the biology of lethal COVID-19. The lungs from individuals with COVID-19 were highly inflamed, with dense infiltration of aberrantly activated monocyte-derived macrophages and alveolar macrophages, but had impaired T cell responses. Monocyte/macrophage-derived interleukin-1ß and epithelial cell-derived interleukin-6 were unique features of SARS-CoV-2 infection compared to other viral and bacterial causes of pneumonia. Alveolar type 2 cells adopted an inflammation-associated transient progenitor cell state and failed to undergo full transition into alveolar type 1 cells, resulting in impaired lung regeneration. Furthermore, we identified expansion of recently described CTHRC1+ pathological fibroblasts3 contributing to rapidly ensuing pulmonary fibrosis in COVID-19. Inference of protein activity and ligand-receptor interactions identified putative drug targets to disrupt deleterious circuits. This atlas enables the dissection of lethal COVID-19, may inform our understanding of long-term complications of COVID-19 survivors, and provides an important resource for therapeutic development.


Subject(s)
COVID-19/pathology , COVID-19/virology , Lung/pathology , SARS-CoV-2/pathogenicity , Single-Cell Analysis , Aged , Aged, 80 and over , Alveolar Epithelial Cells/pathology , Alveolar Epithelial Cells/virology , Atlases as Topic , Autopsy , COVID-19/immunology , Case-Control Studies , Female , Fibroblasts/pathology , Fibrosis/pathology , Fibrosis/virology , Humans , Inflammation/pathology , Inflammation/virology , Macrophages/pathology , Macrophages/virology , Macrophages, Alveolar/pathology , Macrophages, Alveolar/virology , Male , Middle Aged , Plasma Cells/immunology , T-Lymphocytes/immunology
8.
Nature ; 595(7865): 107-113, 2021 07.
Article in English | MEDLINE | ID: mdl-33915569

ABSTRACT

COVID-19, which is caused by SARS-CoV-2, can result in acute respiratory distress syndrome and multiple organ failure1-4, but little is known about its pathophysiology. Here we generated single-cell atlases of 24 lung, 16 kidney, 16 liver and 19 heart autopsy tissue samples and spatial atlases of 14 lung samples from donors who died of COVID-19. Integrated computational analysis uncovered substantial remodelling in the lung epithelial, immune and stromal compartments, with evidence of multiple paths of failed tissue regeneration, including defective alveolar type 2 differentiation and expansion of fibroblasts and putative TP63+ intrapulmonary basal-like progenitor cells. Viral RNAs were enriched in mononuclear phagocytic and endothelial lung cells, which induced specific host programs. Spatial analysis in lung distinguished inflammatory host responses in lung regions with and without viral RNA. Analysis of the other tissue atlases showed transcriptional alterations in multiple cell types in heart tissue from donors with COVID-19, and mapped cell types and genes implicated with disease severity based on COVID-19 genome-wide association studies. Our foundational dataset elucidates the biological effect of severe SARS-CoV-2 infection across the body, a key step towards new treatments.


Subject(s)
COVID-19/pathology , COVID-19/virology , Kidney/pathology , Liver/pathology , Lung/pathology , Myocardium/pathology , SARS-CoV-2/pathogenicity , Adult , Aged , Aged, 80 and over , Atlases as Topic , Autopsy , Biological Specimen Banks , COVID-19/genetics , COVID-19/immunology , Endothelial Cells , Epithelial Cells/pathology , Epithelial Cells/virology , Female , Fibroblasts , Genome-Wide Association Study , Heart/virology , Humans , Inflammation/pathology , Inflammation/virology , Kidney/virology , Liver/virology , Lung/virology , Male , Middle Aged , Organ Specificity , Phagocytes , Pulmonary Alveoli/pathology , Pulmonary Alveoli/virology , RNA, Viral/analysis , Regeneration , SARS-CoV-2/immunology , Single-Cell Analysis , Viral Load
9.
Nat Med ; 27(3): 546-559, 2021 03.
Article in English | MEDLINE | ID: mdl-33654293

ABSTRACT

Angiotensin-converting enzyme 2 (ACE2) and accessory proteases (TMPRSS2 and CTSL) are needed for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) cellular entry, and their expression may shed light on viral tropism and impact across the body. We assessed the cell-type-specific expression of ACE2, TMPRSS2 and CTSL across 107 single-cell RNA-sequencing studies from different tissues. ACE2, TMPRSS2 and CTSL are coexpressed in specific subsets of respiratory epithelial cells in the nasal passages, airways and alveoli, and in cells from other organs associated with coronavirus disease 2019 (COVID-19) transmission or pathology. We performed a meta-analysis of 31 lung single-cell RNA-sequencing studies with 1,320,896 cells from 377 nasal, airway and lung parenchyma samples from 228 individuals. This revealed cell-type-specific associations of age, sex and smoking with expression levels of ACE2, TMPRSS2 and CTSL. Expression of entry factors increased with age and in males, including in airway secretory cells and alveolar type 2 cells. Expression programs shared by ACE2+TMPRSS2+ cells in nasal, lung and gut tissues included genes that may mediate viral entry, key immune functions and epithelial-macrophage cross-talk, such as genes involved in the interleukin-6, interleukin-1, tumor necrosis factor and complement pathways. Cell-type-specific expression patterns may contribute to the pathogenesis of COVID-19, and our work highlights putative molecular pathways for therapeutic intervention.


Subject(s)
COVID-19/epidemiology , COVID-19/genetics , Host-Pathogen Interactions/genetics , SARS-CoV-2/physiology , Sequence Analysis, RNA/statistics & numerical data , Single-Cell Analysis/statistics & numerical data , Virus Internalization , Adult , Aged , Aged, 80 and over , Alveolar Epithelial Cells/metabolism , Alveolar Epithelial Cells/virology , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/pathology , COVID-19/virology , Cathepsin L/genetics , Cathepsin L/metabolism , Datasets as Topic/statistics & numerical data , Demography , Female , Gene Expression Profiling/statistics & numerical data , Humans , Lung/metabolism , Lung/virology , Male , Middle Aged , Organ Specificity/genetics , Respiratory System/metabolism , Respiratory System/virology , Sequence Analysis, RNA/methods , Serine Endopeptidases/genetics , Serine Endopeptidases/metabolism , Single-Cell Analysis/methods
10.
bioRxiv ; 2021 Feb 25.
Article in English | MEDLINE | ID: mdl-33655247

ABSTRACT

The SARS-CoV-2 pandemic has caused over 1 million deaths globally, mostly due to acute lung injury and acute respiratory distress syndrome, or direct complications resulting in multiple-organ failures. Little is known about the host tissue immune and cellular responses associated with COVID-19 infection, symptoms, and lethality. To address this, we collected tissues from 11 organs during the clinical autopsy of 17 individuals who succumbed to COVID-19, resulting in a tissue bank of approximately 420 specimens. We generated comprehensive cellular maps capturing COVID-19 biology related to patients' demise through single-cell and single-nucleus RNA-Seq of lung, kidney, liver and heart tissues, and further contextualized our findings through spatial RNA profiling of distinct lung regions. We developed a computational framework that incorporates removal of ambient RNA and automated cell type annotation to facilitate comparison with other healthy and diseased tissue atlases. In the lung, we uncovered significantly altered transcriptional programs within the epithelial, immune, and stromal compartments and cell intrinsic changes in multiple cell types relative to lung tissue from healthy controls. We observed evidence of: alveolar type 2 (AT2) differentiation replacing depleted alveolar type 1 (AT1) lung epithelial cells, as previously seen in fibrosis; a concomitant increase in myofibroblasts reflective of defective tissue repair; and, putative TP63+ intrapulmonary basal-like progenitor (IPBLP) cells, similar to cells identified in H1N1 influenza, that may serve as an emergency cellular reserve for severely damaged alveoli. Together, these findings suggest the activation and failure of multiple avenues for regeneration of the epithelium in these terminal lungs. SARS-CoV-2 RNA reads were enriched in lung mononuclear phagocytic cells and endothelial cells, and these cells expressed distinct host response transcriptional programs. We corroborated the compositional and transcriptional changes in lung tissue through spatial analysis of RNA profiles in situ and distinguished unique tissue host responses between regions with and without viral RNA, and in COVID-19 donor tissues relative to healthy lung. Finally, we analyzed genetic regions implicated in COVID-19 GWAS with transcriptomic data to implicate specific cell types and genes associated with disease severity. Overall, our COVID-19 cell atlas is a foundational dataset to better understand the biological impact of SARS-CoV-2 infection across the human body and empowers the identification of new therapeutic interventions and prevention strategies.

11.
Article in English | MEDLINE | ID: mdl-32122885

ABSTRACT

Advances in single-cell RNA-seq (scRNA-seq) and computational analysis have enabled the systematic interrogation of the cellular composition of tissues. Combined with tools from developmental biology, cell biology, and genetics, these approaches are revealing fundamental aspects of tissue geometry and physiology, including the distribution, origins, and inferred functions of specialized cell types, and the dynamics of cellular turnover and differentiation. By comparing different tissues, such studies can delineate shared and specialized features of cell types and their lineage. Here, we compare two developmentally related murine epithelia, the airway and the small intestinal epithelia, which are both derived from the embryonic endodermal gut tube. We examine how airway and intestine generate and functionalize common archetypal cell types to fulfill similar shared physiologic functionalities. We point to cases in which similar cell types are repurposed to accommodate each tissue's unique physiologic role, and highlight tissue-specific cells whose specializations contribute to the distinct functional roles of each organ. We discuss how archetypal and unique cell types are incorporated within a cellular lineage, and how the regulation of the proportions of these cell types enables tissue-level organization to meet functional demands and maintain homeostasis.


Subject(s)
Cell Differentiation/physiology , Enteroendocrine Cells/physiology , Intestinal Mucosa/cytology , Neuroendocrine Cells/physiology , Respiratory Mucosa/cytology , Animals , Intestinal Mucosa/growth & development , Mice , Respiratory Mucosa/growth & development
12.
Nat Med ; 26(2): 244-251, 2020 02.
Article in English | MEDLINE | ID: mdl-31959991

ABSTRACT

Mucociliary clearance, the physiological process by which mammalian conducting airways expel pathogens and unwanted surface materials from the respiratory tract, depends on the coordinated function of multiple specialized cell types, including basal stem cells, mucus-secreting goblet cells, motile ciliated cells, cystic fibrosis transmembrane conductance regulator (CFTR)-rich ionocytes, and immune cells1,2. Bronchiectasis, a syndrome of pathological airway dilation associated with impaired mucociliary clearance, may occur sporadically or as a consequence of Mendelian inheritance, for example in cystic fibrosis, primary ciliary dyskinesia (PCD), and select immunodeficiencies3. Previous studies have identified mutations that affect ciliary structure and nucleation in PCD4, but the regulation of mucociliary transport remains incompletely understood, and therapeutic targets for its modulation are lacking. Here we identify a bronchiectasis syndrome caused by mutations that inactivate NIMA-related kinase 10 (NEK10), a protein kinase with previously unknown in vivo functions in mammals. Genetically modified primary human airway cultures establish NEK10 as a ciliated-cell-specific kinase whose activity regulates the motile ciliary proteome to promote ciliary length and mucociliary transport but which is dispensable for normal ciliary number, radial structure, and beat frequency. Together, these data identify a novel and likely targetable signaling axis that controls motile ciliary function in humans and has potential implications for other respiratory disorders that are characterized by impaired mucociliary clearance.


Subject(s)
Ciliopathies/immunology , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Mucociliary Clearance , NIMA-Related Kinases/metabolism , Adolescent , Adult , Cell Separation , Child , Ciliopathies/metabolism , Epithelial Cells/metabolism , Exome , Female , Flow Cytometry , HEK293 Cells , Homozygote , Humans , Microscopy, Phase-Contrast , Microscopy, Video , Mutation , Phenotype , Proteome , Respiratory System , Tomography, X-Ray Computed , X-Ray Microtomography , Young Adult
14.
Am J Respir Cell Mol Biol ; 61(1): 31-41, 2019 07.
Article in English | MEDLINE | ID: mdl-30995076

ABSTRACT

Lung disease accounts for every sixth death globally. Profiling the molecular state of all lung cell types in health and disease is currently revolutionizing the identification of disease mechanisms and will aid the design of novel diagnostic and personalized therapeutic regimens. Recent progress in high-throughput techniques for single-cell genomic and transcriptomic analyses has opened up new possibilities to study individual cells within a tissue, classify these into cell types, and characterize variations in their molecular profiles as a function of genetics, environment, cell-cell interactions, developmental processes, aging, or disease. Integration of these cell state definitions with spatial information allows the in-depth molecular description of cellular neighborhoods and tissue microenvironments, including the tissue resident structural and immune cells, the tissue matrix, and the microbiome. The Human Cell Atlas consortium aims to characterize all cells in the healthy human body and has prioritized lung tissue as one of the flagship projects. Here, we present the rationale, the approach, and the expected impact of a Human Lung Cell Atlas.


Subject(s)
Lung Diseases/pathology , Lung/pathology , Humans , Lung/metabolism , Transcriptome/genetics
15.
Nature ; 560(7718): 319-324, 2018 08.
Article in English | MEDLINE | ID: mdl-30069044

ABSTRACT

The airways of the lung are the primary sites of disease in asthma and cystic fibrosis. Here we study the cellular composition and hierarchy of the mouse tracheal epithelium by single-cell RNA-sequencing (scRNA-seq) and in vivo lineage tracing. We identify a rare cell type, the Foxi1+ pulmonary ionocyte; functional variations in club cells based on their location; a distinct cell type in high turnover squamous epithelial structures that we term 'hillocks'; and disease-relevant subsets of tuft and goblet cells. We developed 'pulse-seq', combining scRNA-seq and lineage tracing, to show that tuft, neuroendocrine and ionocyte cells are continually and directly replenished by basal progenitor cells. Ionocytes are the major source of transcripts of the cystic fibrosis transmembrane conductance regulator in both mouse (Cftr) and human (CFTR). Knockout of Foxi1 in mouse ionocytes causes loss of Cftr expression and disrupts airway fluid and mucus physiology, phenotypes that are characteristic of cystic fibrosis. By associating cell-type-specific expression programs with key disease genes, we establish a new cellular narrative for airways disease.


Subject(s)
Cell Differentiation/genetics , Cell Lineage/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis/genetics , Epithelial Cells/metabolism , Animals , Asthma/genetics , Epithelial Cells/cytology , Female , Forkhead Transcription Factors/deficiency , Forkhead Transcription Factors/genetics , Gene Expression Profiling , Gene Expression Regulation , Goblet Cells/cytology , Goblet Cells/metabolism , Humans , Lung/cytology , Male , Mice , Sequence Analysis, RNA , Single-Cell Analysis , Trachea/cytology
17.
Cell Stem Cell ; 22(5): 653-667.e5, 2018 05 03.
Article in English | MEDLINE | ID: mdl-29656941

ABSTRACT

The mouse trachea is thought to contain two distinct stem cell compartments that contribute to airway repair-basal cells in the surface airway epithelium (SAE) and an unknown submucosal gland (SMG) cell type. Whether a lineage relationship exists between these two stem cell compartments remains unclear. Using lineage tracing of glandular myoepithelial cells (MECs), we demonstrate that MECs can give rise to seven cell types of the SAE and SMGs following severe airway injury. MECs progressively adopted a basal cell phenotype on the SAE and established lasting progenitors capable of further regeneration following reinjury. MECs activate Wnt-regulated transcription factors (Lef-1/TCF7) following injury and Lef-1 induction in cultured MECs promoted transition to a basal cell phenotype. Surprisingly, dose-dependent MEC conditional activation of Lef-1 in vivo promoted self-limited airway regeneration in the absence of injury. Thus, modulating the Lef-1 transcriptional program in MEC-derived progenitors may have regenerative medicine applications for lung diseases.


Subject(s)
Epithelial Cells/cytology , Exocrine Glands/cytology , Respiratory Mucosa/cytology , Stem Cells/cytology , Trachea/cytology , Animals , Cells, Cultured , Female , Male , Mice , Mice, Inbred Strains , Mice, Transgenic
18.
ACS Biomater Sci Eng ; 3(5): 750-756, 2017 May 08.
Article in English | MEDLINE | ID: mdl-33440497

ABSTRACT

Recently, supramolecular hydrogels assembled through nonspecific interactions between polymers and nanoparticles (termed PNP systems) were reported to have rapid shear-thinning and self-healing properties amenable for cell-delivery applications in regenerative medicine. Here, we introduce protein engineering concepts into the design of a new family of PNP hydrogels to enable direct control over the polymer-nanoparticle interactions using peptide-based molecular recognition motifs. Specifically, we have designed a bifunctional peptide that induces supramolecular hydrogel assembly between hydroxy apatite nanoparticles and an engineered, recombinant protein. We demonstrate that this supramolecular assembly critically requires molecular recognition, as no assembly is observed in the presence of control peptides with a scrambled amino acid sequence. Titration of the bifunctional peptide enables direct control over the number of physical cross-links within the system and hence the resulting hydrogel mechanical properties. As with previous PNP systems, these materials are rapidly shear-thinning and self-healing. As proof-of-concept, we demonstrate that these materials are suitable for therapeutic cell delivery applications in a preclinical murine calvarial defect model.

20.
Tissue Eng Part C Methods ; 21(3): 314-21, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25275778

ABSTRACT

Current methods for the isolation of fibroblasts require extended ex vivo manipulation in cell culture. As a consequence, prior studies investigating fibroblast biology may fail to adequately represent cellular phenotypes in vivo. To overcome this problem, we describe a detailed protocol for the isolation of fibroblasts from the dorsal dermis of adult mice that bypasses the need for cell culture, thereby preserving the physiological, transcriptional, and proteomic profiles of each cell. Using the described protocol we characterized the transcriptional programs and the surface expression of 176 CD markers in cultured versus uncultured fibroblasts. The differential expression patterns we observed highlight the importance of a live harvest for investigations of fibroblast biology.


Subject(s)
Biomarkers/metabolism , Cell Culture Techniques/methods , Cell Membrane/metabolism , Fibroblasts/cytology , Animals , Cell Survival , Cells, Cultured , Flow Cytometry , Mice , Oligonucleotide Array Sequence Analysis , Tissue Culture Techniques , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...