Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 223: 117298, 2019 Dec 05.
Article in English | MEDLINE | ID: mdl-31254751

ABSTRACT

In this paper we present a Raman spectroscopy study of Na3MCO3PO4 (M=Mn, Fe, Co e Ni) carbonophosphates. The insertion of different metals with distinct ionic radii in the MO6 octahedra leads to changes in unit cell volume, thus leading to blueshifts in the energies of the Raman active modes. The experimental data are supported by lattice dynamic calculations and the vibrational properties of the carbonophosphates Na3MCO3PO4 are properly described.

2.
Biotechnol Biofuels ; 11: 73, 2018.
Article in English | MEDLINE | ID: mdl-29588658

ABSTRACT

BACKGROUND: To date, great strides have been made in elucidating the role of thermochemical pretreatments in the chemical and structural features of plant cell walls; however, there is no clear picture of the plant recalcitrance and its relationship to deconstruction. Previous studies precluded full answers due to the challenge of multiscale features of plant cell wall organization. Complementing the previous efforts, we undertook a systematic, multiscale, and integrated approach to track the effect of microwave-assisted H2SO4 and NaOH treatments on the hierarchical structure of plants, i.e., from a nano- to micrometer scale. We focused on the investigation of the highly recalcitrant sclerenchyma cell walls from sugarcane bagasse. RESULTS: Through atomic force microscopy and X-ray diffraction analyses, remarkable details of the assembly of cellulose microfibrils not previously seen were revealed. Following the H2SO4 treatment, we observed that cellulose microfibrils were almost double the width of the alkali pretreated sample at the temperature of 160 °C. Such enlargement led to a greater contact between cellulose chains, with a subsequent molecule alignment, as indicated by the X-ray diffraction (XRD) results with the conspicuous expansion of the average crystallite size. The delignification process had little effect on the local nanometer-sized arrangement of cellulose molecules. However, the rigidity and parallel alignment of cellulose microfibrils were partially degraded. The XRD analysis also agrees with these findings as evidenced by large momentum transfer vectors (q > 20 nm-1), interpreted as indicators of the long-range order of cell wall components, which were similar for all the studied samples except with application of the NaOH treatment at 160 °C. These changes were followed by the eventual swelling of the fiber cell walls. CONCLUSIONS: Based on an integrated approach, we presented multidimensional architectural models of cell wall deconstruction resulting from microwave-assisted pretreatments. We provided direct evidence supporting the idea that hemicellulose is the main barrier for the swelling of cellulose microfibrils, whereas lignin adds rigidity to cell walls. Our findings shed light on the design of more efficient strategies, not only for the conversion of biomass to fuels but also for the production of nanocellulose, which has great potential for several applications such as composites, rheology modifiers, and pharmaceuticals.

3.
Chemosphere ; 158: 91-9, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27258899

ABSTRACT

The nature of As-Al-Fe co-precipitates aged for 120 days are investigated in detail by High Resolution Transmission Electron Microscopy (HRTEM), Scanning TEM (STEM), electron diffraction, Energy Dispersive X-Ray Spectroscopy (EDS), Electron Energy-Loss Spectroscopy (EELS), and Energy Filtered Transmission Electron Microscopy (EFTEM). The Al present in magnetite is shown to favour As incorporation (up to 1.10 wt%) relative to Al-free magnetite and Al-goethite, but As uptake by Al-magnetite decreases with increasing Al substitution (3.53-11.37 mol% Al). Arsenic-bearing magnetite and goethite mesocrystals (MCs) are formed by oriented aggregation (OA) of primary nanoparticles (NPs). Well-crystalline magnetite likely formed by Otswald ripening was predominant in the Al-free system. The As content in Al-goethite MCs (having approximately 13% substituted Al) was close to the EDS detection limit (0.1 wt% As), but was below detection in Al-goethites with 23.00-32.19 mol% Al. Our results show for the first time the capacity of Al-magnetite to incorporate more As than Al-free magnetite, and the role of Al in favouring OA-based crystal growth under the experimental conditions, and therefore As retention in the formed MCs. The proposed mechanism of As incorporation involves adsorption of As onto the newly formed NPs. Arsenic is then trapped in the MCs as they grow by self-assembly OA upon attachment of the NPs. We conclude that Al may diffuse to the crystal faces with high surface energy to reduce the total energy of the system during the attachment events, thus favouring the oriented aggregation.


Subject(s)
Aluminum/chemistry , Arsenic/isolation & purification , Magnetite Nanoparticles/chemistry , Nanoparticles/chemistry , Nanotechnology/methods , Adsorption , Arsenic/chemistry , Crystallization , Environmental Restoration and Remediation , Ferrosoferric Oxide/chemistry , Iron Compounds/chemistry , Metal Nanoparticles/chemistry , Microscopy, Electron, Scanning Transmission , Microscopy, Electron, Transmission , Minerals/chemistry , Spectroscopy, Electron Energy-Loss
4.
Chemosphere ; 138: 340-7, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26126189

ABSTRACT

Iron (hydr)oxides are known to play a major role in arsenic fixation in the environment. The mechanisms for long-term fixation into their crystal structure, however, remain poorly understood, especially arsenic partitioning behavior during transformation from amorphous to crystalline phases under natural conditions. In this study, these mechanisms are investigated in Fe-Al-oxisols exposed over a period of 10 years to a sulfide concentrate in tailings impoundments. The spatial resolution necessary to investigate the markedly heterogeneous nanoscale phases found in the oxisols was achieved by combining three different, high resolution electron microscopy techniques - Nano-Beam Electron Diffraction (NBD), Electron Energy-Loss Spectroscopy (EELS), and High Resolution Transmission Electron Microscopy (HRTEM). Arsenic (1.6±0.5 wt.%) was unambiguously and precisely identified in mesocrystals of Al-hematite with an As/Fe atomic ratio of 0.026±0.006. The increase in the c-axis (c=1.379±0.009 nm) compared to standard hematite (c=1.372 nm) is consistent with the presence of arsenic in the Al-hematite structure. The As-bearing Al-hematite is interpreted as a secondary phase formed from oxyhydroxides, such as ferrihydrite, during the long-term exposure to the sulfide tailings. The proposed mechanism of arsenic fixation in the Al-hematite structure involves adsorption onto Al-ferrihydrite nanoparticles, followed by Al-ferrihydrite aggregation by self-assembly oriented attachment and coalescence that ultimately produces Al-hematite mesocrystals. Our results illustrate for the first time the process of formation of stable arsenic bearing Al-hematite for the long-term immobilization of arsenic in environmental samples.


Subject(s)
Arsenic/isolation & purification , Environmental Pollutants/isolation & purification , Ferric Compounds/chemistry , Nanostructures/chemistry , Adsorption , Arsenic/chemistry , Crystallization , Environmental Pollutants/chemistry , Environmental Restoration and Remediation , Microscopy, Electron, Transmission , Models, Chemical , Phase Transition , Spectroscopy, Electron Energy-Loss , Surface Properties
5.
Chemistry ; 20(21): 6288-93, 2014 May 19.
Article in English | MEDLINE | ID: mdl-24824333

ABSTRACT

This work reports the analysis of the distribution of Gd atoms and the quantification of O vacancies applied to individual CeO2 and Gd-doped CeO2 nanocrystals by electron energy-loss spectroscopy. The concentration of O vacancies measured on the undoped system (6.3±2.6 %) matches the expected value given the typical Ce(3+) content previously reported for CeO2 nanoparticles. The doped nanoparticles have an uneven distribution of dopant atoms and an atypical amount of O vacant sites (37.7±4.1 %). The measured decrease of the O content induced by Gd doping cannot be explained solely by the charge balance including Ce(3+) and Gd(3+) ions.

6.
Phys Chem Chem Phys ; 16(3): 1089-94, 2014 Jan 21.
Article in English | MEDLINE | ID: mdl-24287784

ABSTRACT

A theoretical approach aiming at the prediction of segregation of dopant atoms on nanocrystalline systems is discussed here. It considers the free energy minimization argument in order to provide the most likely dopant distribution as a function of the total doping level. For this, it requires as input (i) a fixed polyhedral geometry with defined facets, and (ii) a set of functions that describe the surface energy as a function of dopant content for different crystallographic planes. Two Sb-doped SnO2 nanocrystalline systems with different morphology and dopant content were selected as a case study, and the calculation of the dopant distributions expected for them is presented in detail. The obtained results were compared to previously reported characterization of this system by a combination of HRTEM and surface energy calculations, and both methods are shown to be equivalent. Considering its application pre-requisites, the present theoretical approach can provide a first estimation of doping atom distribution for a wide range of nanocrystalline systems. We expect that its use will support the reduction of experimental effort for the characterization of doped nanocrystals, and also provide a solution to the characterization of systems where even state-of-art analytical techniques are limited.

7.
Nanoscale Res Lett ; 8(1): 475, 2013 Nov 13.
Article in English | MEDLINE | ID: mdl-24225330

ABSTRACT

This work presents the morphological characterization of CeO2 nanocrystals by the analysis of single unfiltered high-angle annular dark-field (HAADF)-high-resolution scanning transmission electron microscopy (HRSTEM) images. The thickness of each individual atomic column is estimated by the classification of its HAADF integrated intensity using a Gaussian mixture model. The resulting thickness maps obtained from two example nanocrystals with distinct morphology were analyzed with aid of the symmetry from the CeO2 crystallographic structure, providing an approximation for their 3-D morphology with high spatial resolution. A confidence level of ±1 atom per atomic column along the viewing direction on the thickness estimation is indicated by the use of multislice image simulation. The described characterization procedure stands out as a simple approach for retrieving morphological parameters of individual nanocrystals, such as volume and specific surface areas for different crystalline planes. The procedure is an alternative to the tilt-series tomography technique for a number of nanocrystalline systems, since its application does not require the acquisition of multiple images from the same nanocrystal along different zone axes.

8.
Chemphyschem ; 13(2): 437-43, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22241849

ABSTRACT

This work presents an overview of high-resolution scanning transmission electron microscopy (HRSTEM) techniques and exemplifies the novel quantitative characterization possibilities that have emerged from recent advances in these methods. The synergistic combination of atomic resolution imaging and spectroscopy provided by HRSTEM is highlighted as a unique feature that can provide a comprehensive analytical description of material properties at the nanoscale. State-of-the-art high-angle annular dark field and annular bright field examples are depicted as well as the use of X-ray energy-dispersive spectroscopy and electron energy-loss spectroscopy for probing samples properties at the atomic scale. In addition, promising techniques such as cathodoluminescence, confocal HRSTEM, and diffraction mapping are introduced. The presented examples and results indicate that HRSTEM-related techniques are fundamental tools for comprehensive assessment of properties at the atomic scale.

9.
Chem Commun (Camb) ; 48(4): 591-3, 2012 Jan 14.
Article in English | MEDLINE | ID: mdl-22113467

ABSTRACT

The highly uniform micro- and mesoporous SiO(2) nanoparticles (40-70 nm) are hierarchically functionalized with antagonistic groups: hydrophobic (phenyl) on the internal pores and hydrophilic (methyl-phosphonate) on the external surface. Considering the large hydrophobic internal coating and the long-term colloidal stability, these systems are suitable nanocarriers by using the host-guest approach.

10.
Chemistry ; 17(41): 11515-9, 2011 Oct 04.
Article in English | MEDLINE | ID: mdl-21953929

ABSTRACT

The development of reliable nanostructured devices is intrinsically dependent on the description and manipulation of materials' properties at the atomic scale. Consequently, several technological advances are dependent on improvements in the characterization techniques and in the models used to describe the properties of nanosized materials as a function of the synthesis parameters. The evaluation of doping element distributions in nanocrystals is directly linked to fundamental aspects that define the properties of the material, such as surface-energy distribution, nanoparticle shape, and crystal growth mechanism. However, this is still one of the most challenging tasks in the characterization of materials because of the required spatial resolution and other various restrictions from quantitative characterization techniques, such as sample degradation and signal-to-noise ratio. This paper addresses the dopant segregation characterization for two antimony-doped tin oxide (Sb:SnO(2)) systems, with different Sb doping levels, by the combined use of experimental and simulated high-resolution transmission electron microscopy (HRTEM) images and surface-energy ab initio calculations. The applied methodology provided three-dimensional models with geometrical and compositional information that were demonstrated to be self-consistent and correspond to the systems' mean properties. The results evidence that the dopant distribution configuration is dependent on the system composition and that dopant atom redistribution may be an active mechanism for the overall surface-energy minimization.

11.
Ultramicroscopy ; 111(8): 1077-82, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21740871

ABSTRACT

Image simulation has an invaluable importance for the accurate analysis of High Resolution Transmission Electron Microscope (HRTEM) results, especially due to its non-linear image formation mechanism. Because the as-obtained images cannot be interpreted in a straightforward fashion, the retrieval of both qualitative and quantitative information from HRTEM micrographs requires an iterative process including the simulation of a nanocrystal model and its comparison with experimental images. However most of the available image simulation software requires atom-by-atom coordinates as input for the calculations, which can be prohibitive for large finite crystals and/or low-symmetry systems and zone axis orientations. This paper presents an open source citation-ware tool named MEGACELL, which was developed to assist on the construction of nanocrystals models. It allows the user to build nanocrystals with virtually any convex polyhedral geometry and to retrieve its atomic positions either as a plain text file or as an output compatible with EMS (Electron Microscopy Software) input protocol. In addition to the description of this tool features, some construction examples and its application for scientific studies are presented. These studies show MEGACELL as a handy tool, which allows an easier construction of complex nanocrystal models and improves the quantitative information extraction from HRTEM images.

12.
Chem Commun (Camb) ; 47(11): 3117-9, 2011 Mar 21.
Article in English | MEDLINE | ID: mdl-21258701

ABSTRACT

This work reports a detailed characterization of an anomalous oriented attachment behaviour for SnO(2) nanocrystals. Our results evidenced an anisotropic growth for two identical <110> directions, which are equivalent according to the SnO(2) crystallographic structure symmetry. A hypothesis is proposed to describe this behaviour.

13.
J Am Chem Soc ; 131(40): 14544-8, 2009 Oct 14.
Article in English | MEDLINE | ID: mdl-19807192

ABSTRACT

Modeling of nanocrystals supported by advanced morphological and chemical characterization is a unique tool for the development of reliable nanostructured devices, which depends on the ability to synthesize and characterize materials on the atomic scale. Among the most significant challenges in nanostructural characterization is the evaluation of crystal growth mechanisms and their dependence on the shape of nanoparticles and the distribution of doping elements. This paper presents a new strategy to characterize nanocrystals, applied here to antimony-doped tin oxide (Sb-SnO(2)) (ATO) by the combined use of experimental and simulated high-resolution transmission electron microscopy (HRTEM) images and surface energy ab initio calculations. The results show that the Wulff construction can not only describe the shape of nanocrystals as a function of surface energy distribution but also retrieve quantitative information on dopant distribution by the dimensional analysis of nanoparticle shapes. In addition, a novel three-dimensional evaluation of an oriented attachment growth mechanism is provided in the proposed methodology. This procedure is a useful approach for faceted nanocrystal shape modeling and indirect quantitative evaluation of dopant spatial distribution, which are difficult to evaluate by other techniques.

14.
J Phys Chem B ; 112(46): 14648-54, 2008 Nov 20.
Article in English | MEDLINE | ID: mdl-18774855

ABSTRACT

There are practical and academic situations that justify the study of calcium carbonate crystallization and especially of systems that are associated with organic matrices and a confined medium. Despite the fact that many different matrices have been studied, the use of well-behaved, thin organic films may provide new knowledge about this system. In this work, we have studied the growth of calcium carbonate particles on well-defined organic matrices that were formed by layer-by-layer (LbL) polyelectrolyte films deposited on phospholipid Langmuir-Blodgett films (LB). We were able to change the surface electrical charge density of the LB films by changing the proportions of a negatively charged lipid, the sodium salt of dimyristoyl-sn-glycero-phosphatidyl acid (DMPA), and a zwitterionic lipid, dimyristoyl-sn-glycero-phosphatidylethanolamine (DMPE). This affects the subsequent polyelectrolyte LbL film deposition, which also changes the the nature of the bonding (electrostatic interaction or hydrogen bonding). This approach allowed for the formation of calcium carbonate particles of different final shapes, roughnesses, and sizes. The masses of deposited lipids, polyelectrolytes, and calcium cabonate were quantified by the quartz crystal microbalance technique. The structures of obtained particles were analyzed by scanning electron microscopy.


Subject(s)
Calcium Carbonate/chemistry , Phospholipids , Crystallization , Phosphatidylethanolamines , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...