Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 127(13): 137201, 2021 Sep 24.
Article in English | MEDLINE | ID: mdl-34623852

ABSTRACT

Asymmetric charge transport at the interface of two materials with dissimilar electrical properties, such as metal-semiconductor and p-n junctions, is the fundamental feature behind modern diode and transistor technology. Spin pumping from a ferromagnet into an adjacent nonmagnetic material is a powerful technique to generate pure-spin currents, wherein spin transport is unaccompanied by net charge transport. It is therefore interesting to study pure-spin transport at the interface of two materials with different spin transport properties. Here we demonstrate asymmetric transport of pure-spin currents across an interface of dissimilar nonmagnetic materials Au/Pt. We exploit Py/Au/Pt/Co structures where spin pumping can generate pure-spin current from either Py or Co independently. We find that the transmission of pure-spin current from Au into Pt is twice as efficient as transmission from Pt into Au. Experimental results are interpreted by extending conventional spin-pumping, spin-diffusion theory to include boundary conditions of reflected and transmitted spin current at the Au/Pt interface that are proportional to the established spin chemical potentials on either side of the interface.

2.
Sci Rep ; 10(1): 10220, 2020 Jun 23.
Article in English | MEDLINE | ID: mdl-32576911

ABSTRACT

Spin transfer torque magnetic random access memory (STT-MRAM) is a promising candidate for next generation memory as it is non-volatile, fast, and has unlimited endurance. Another important aspect of STT-MRAM is that its core component, the nanoscale magnetic tunneling junction (MTJ), is thought to be radiation hard, making it attractive for space and nuclear technology applications. However, studies on the effects of ionizing radiation on the STT-MRAM writing process are lacking for MTJs with perpendicular magnetic anisotropy (pMTJs) required for scalable applications. Particularly, the question of the impact of extreme total ionizing dose on perpendicular magnetic anisotropy, which plays a crucial role on thermal stability and critical writing current, remains open. Here we report measurements of the impact of high doses of gamma and neutron radiation on nanoscale pMTJs used in STT-MRAM. We characterize the tunneling magnetoresistance, the magnetic field switching, and the current-induced switching before and after irradiation. Our results demonstrate that all these key properties of nanoscale MTJs relevant to STT-MRAM applications are robust against ionizing radiation. Additionally, we perform experiments on thermally driven stochastic switching in the gamma ray environment. These results indicate that nanoscale MTJs are promising building blocks for radiation-hard non-von Neumann computing.

3.
Nat Commun ; 10(1): 543, 2019 02 01.
Article in English | MEDLINE | ID: mdl-30710092

ABSTRACT

Energy-efficient switching of magnetization is a central problem in nonvolatile magnetic storage and magnetic neuromorphic computing. In the past two decades, several efficient methods of magnetic switching were demonstrated including spin torque, magneto-electric, and microwave-assisted switching mechanisms. Here we experimentally show that low-dimensional magnetic chaos induced by alternating spin torque can strongly increase the rate of thermally-activated magnetic switching in a nanoscale ferromagnet. This mechanism exhibits a well-pronounced threshold character in spin torque amplitude and its efficiency increases with decreasing spin torque frequency. We present analytical and numerical calculations that quantitatively explain these experimental findings and reveal the key role played by low-dimensional magnetic chaos near saddle equilibria in enhancement of the switching rate. Our work unveils an important interplay between chaos and stochasticity in the energy assisted switching of magnetic nanosystems and paves the way towards improved energy efficiency of spin torque memory and logic.

4.
Sci Rep ; 7(1): 4861, 2017 07 07.
Article in English | MEDLINE | ID: mdl-28687777

ABSTRACT

We report on magnetic damping of exchange coupled, polycrystalline Py(Ni80Fe20)|Fe and Fe|Py bilayers, prepared by sputter-deposition on an amorphous 3 nm Ta seed layer. FMR measurements are performed on varying thicknesses of the individual Py and Fe layers while keeping the total bilayer structure thickness fixed. When Fe is grown directly on Ta, there is large magnetic inhomogeneity and damping. However, when a Py layer is deposited between Fe and Ta, both the magnetic inhomogeneity and damping significantly decrease even if Fe is covered by Ta. The intrinsic damping of the Ta|Py|Fe film can be further lowered by increasing the Fe to Py ratio. SQUID measurements show a linear increase in saturation magnetization with increasing ratio of Fe to Py. A combination of in-plane and out-of-plane X-ray diffraction measurements show that Py is textured along the 〈111〉 directions and Fe is textured along the 〈110〉, with Fe texture significantly improving if it is deposited on Ta|Py instead of Ta. By improving the texture of Fe by introducing a thin Py layer between Fe and Ta, one can grow Fe thin films with zero in-plane anisotropy, tunable magnetic moment, and low magnetic damping, approaching that of the best single crystal Fe.

SELECTION OF CITATIONS
SEARCH DETAIL
...