Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Neuropharmacol ; 9(1): 143-50, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21886580

ABSTRACT

Drug addiction results from the interplay between social and biological factors. Among these, genetic variables play a major role. The use of genetically related inbred rat strains that differ in their preference for drugs of abuse is one approach of great importance to explore genetic determinants. Lewis and Fischer 344 rats have been extensively studied and it has been shown that the Lewis strain is especially vulnerable to the addictive properties of several drugs when compared with the Fischer 344 strain. Here, we have used microarrays to analyze gene expression profiles in the frontal cortex and nucleus accumbens of Lewis and Fischer 344 rats. Our results show that only a very limited group of genes were differentially expressed in Lewis rats when compared with the Fischer 344 strain. The genes that were induced in the Lewis strain were related to oxygen transport, neurotransmitter processing and fatty acid metabolism. On the contrary genes that were repressed in Lewis rats were involved in physiological functions such as drug and proton transport, oligodendrocyte survival and lipid catabolism.These data might be useful for the identification of genes which could be potential markers of the vulnerability to the addictive properties of drugs of abuse.

2.
Ann N Y Acad Sci ; 1139: 390-401, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18991886

ABSTRACT

In vitro and in vivo studies have shown that abused solvents affect different neurotransmitter systems, including the GABAergic, glutamatergic, and opioidergic. The first purpose of this study was to determine in mice whether an acute exposure to 4,000 ppm toluene or 12,000 ppm 1,1,1-trichloroethane (TCE) modifies receptor binding levels to: (a) DAMGO, a mu-opioid receptor selective agonist; (b) MK-801, a noncompetitive selective NMDA-receptor antagonist; and (c) flunitrazepam, a benzodiazepine binding site selective agonist. In addition, in separate groups of animals, nociceptive effects of toluene alone or co-administered with morphine were evaluated in the hot-plate test. Mice were exposed to toluene or TCE in static exposure chambers for 30 min, and their brains were removed 24 h later for autoradiography. Acute toluene inhalation produced a significant decrease in mu-opioid receptor binding levels in cingulate and piriform cortices, caudate putamen, thalamus, amygdala, and periaqueductal gray, whereas TCE significantly decreased mu-opioid receptor levels, but only in thalamus and periaqueductal gray. Both toluene and TCE decreased benzodiazepine receptor binding levels in discrete brain areas, but had no effect on NMDA receptor levels. In the hot-plate test, a single toluene exposure counteracted morphine antinociceptive response when the solvent exposure time was immediately followed by morphine treatment, but not when morphine was administered 24, 48, 72, and 96 h later. However, co-administration of morphine and toluene 24, 48, 72, and 96 h after the single solvent exposure resulted in morphine-induced analgesia blockade. Present results suggest that mu-opioid receptors are an important molecular target for organic solvents, and that the inhalation of these compounds may affect the analgesic properties of opioids.


Subject(s)
Brain/drug effects , Brain/metabolism , Receptors, GABA-A/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Receptors, Opioid, mu/metabolism , Toluene/pharmacology , Trichloroethanes/pharmacology , Animals , Binding Sites , Brain/anatomy & histology , Dizocilpine Maleate/metabolism , Excitatory Amino Acid Antagonists/metabolism , Humans , Inhalation Exposure , Mice , Morphine/metabolism , Narcotics/metabolism , Pain Measurement , Solvents/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...