Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
J Expo Sci Environ Epidemiol ; 33(1): 1-11, 2023 01.
Article in English | MEDLINE | ID: mdl-35260805

ABSTRACT

On the 30th anniversary of the Principles of Environmental Justice established at the First National People of Color Environmental Leadership Summit in 1991 (Principles of Environmental Justice), we continue to call for these principles to be more widely adopted. We propose an environmental justice framework for exposure science to be implemented by all researchers. This framework should be the standard and not an afterthought or trend dismissed by those who believe that science should not be politicized. Most notably, this framework should be centered on the community it seeks to serve. Researchers should meet with community members and stakeholders to learn more about the community, involve them in the research process, collectively determine the environmental exposure issues of highest concern for the community, and develop sustainable interventions and implementation strategies to address them. Incorporating community "funds of knowledge" will also inform the study design by incorporating the knowledge about the issue that community members have based on their lived experiences. Institutional and funding agency funds should also be directed to supporting community needs both during the "active" research phase and at the conclusion of the research, such as mechanisms for dissemination, capacity building, and engagement with policymakers. This multidirectional framework for exposure science will increase the sustainability of the research and its impact for long-term success.


Subject(s)
Environmental Justice , Research Design , Humans , Environmental Exposure , Anniversaries and Special Events
2.
Environ Eng Sci ; 38(5): 288-297, 2021 May 01.
Article in English | MEDLINE | ID: mdl-34079202

ABSTRACT

Communities of color are disproportionately burdened by environmental pollution and by obstacles to influence policies that impact environmental health. Black, Hispanic, and Native American students and faculty are also largely underrepresented in environmental engineering programs in the United States. Nearly 80 participants of a workshop at the 2019 Association of Environmental Engineering and Science Professors (AEESP) Research and Education Conference developed recommendations for reversing these trends. Workshop participants identified factors for success in academia, which included adopting a broader definition for the impact of research and teaching. Participants also supported the use of community-based participatory research and classroom action research methods in engineering programs for recruiting, retaining, and supporting the transition of underrepresented students into professional and academic careers. However, institutions must also evolve to recognize the academic value of community-based work to enable faculty, especially underrepresented minority faculty, who use it effectively, to succeed in tenure promotions. Workshop discussions elucidated potential causal relationships between factors that influence the co-creation of research related to academic skills, community skills, mutual trust, and shared knowledge. Based on the discussions from this workshop, we propose a pathway for increasing diversity and community participation in the environmental engineering discipline by exposing students to community-based participatory methods, establishing action research groups for faculty, broadening the definition of research impact to improve tenure promotion experiences for minority faculty, and using a mixed methods approach to evaluate its impact.

3.
Sci Total Environ ; 690: 209-216, 2019 Nov 10.
Article in English | MEDLINE | ID: mdl-31288112

ABSTRACT

Failure of large, concrete structures can lead to the generation of very small fragments, including aerosols in the fine fraction, which have aerodynamic diameters of ≤2.5 µm (PM2.5). These aerosols can persist in the environment, pose exposure risks, and potentially cause negative health effects. New trends in construction favor the use of concrete reinforced with steel fibers, but little is known about the nature of the fragments generated during its failure. This study investigated the fragmentation of several steel-fiber reinforced concrete formulations using dynamic compression testing. The release of tumor necrosis factor alpha (TNF-α), an inflammatory marker widely used in both human and animal studies, was then analyzed to determine the effects of the fragments in the aerosol fine fraction on mouse macrophages (RAW 264.7). All concrete formulations studied showed statistically increased TNF-α release, which was inversely correlated with fiber length and fiber content (% weight). In addition, results from a select set of concrete formulations also showed a clear dose-response relationship. This paper postulates the fracture mechanisms by which concrete parameters (i.e., fiber length and content) lead to the generation of PM2.5, producing the observed TNF-α release.


Subject(s)
Air Pollutants/toxicity , Construction Materials , Macrophages/drug effects , Particulate Matter/toxicity , Tumor Necrosis Factor-alpha/metabolism , Animals , Macrophages/metabolism , Mice
4.
Environ Pollut ; 249: 518-526, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30933751

ABSTRACT

Nail salon technicians face chronic exposure to volatile organic compounds (VOCs), which can lead to adverse health outcomes including cancer. In this study, indoor levels of formaldehyde, as well as benzene, toluene, ethylbenzene and xylene, were measured in 6 Colorado nail salons. Personal exposure VOC measurements and health questionnaires (n = 20) were also performed; questionnaires included employee demographics, health symptoms experienced, and protective equipment used. Cancer slope factors from the United States Environmental Protection Agency (US EPA) and anthropometric data from the Centers for Disease Control and Prevention were then used to estimate cancer risk for workers, assuming 20-yr exposures to concentrations of benzene and formaldehyde reported here. Results show that 70% of surveyed workers experienced at least one health issue related to their employment, with many reporting multiple related symptoms. Indoor concentrations of formaldehyde ranged from 5.32 to 20.6 µg m-3, across all 6 salons. Indoor concentrations of toluene ranged from 26.7 to 816 µg m-3, followed by benzene (3.13-51.8 µg m-3), xylenes (5.16-34.6 µg m-3), and ethylbenzene (1.65-9.52 µg m-3). Formaldehyde levels measured in one salon exceeded the Recommended Exposure Limit from the National Institute for Occupational Safety and Health. Cancer risk estimates from formaldehyde exposure exceeded the US EPA de minimis risk level (1 × 10-6) for squamous cell carcinoma, nasopharyngeal cancer, Hodgkin's lymphoma, and leukemia; leukemia risk exceeded 1 × 10-4 in one salon. The average leukemia risk from benzene exposure also exceeded the US EPA de minimis risk level for all demographic categories modeled. In general, concentrations of aromatic compounds measured here were comparable to those measured in studies of oil refinery and auto garage workers. Cancer risk models determined that 20-yr exposure to formaldehyde and benzene concentrations measured in this study will significantly increase worker's risk of developing cancer in their lifetime.


Subject(s)
Air Pollutants/analysis , Beauty Culture , Environmental Monitoring/methods , Occupational Exposure/analysis , Volatile Organic Compounds/analysis , Adult , Benzene/analysis , Benzene Derivatives/analysis , Colorado , Formaldehyde/adverse effects , Formaldehyde/analysis , Humans , Nasopharyngeal Neoplasms/chemically induced , Respiratory Hypersensitivity , Surveys and Questionnaires , Toluene/analysis , United States , United States Environmental Protection Agency , Xylenes/analysis
5.
Environ Pollut ; 236: 477-487, 2018 May.
Article in English | MEDLINE | ID: mdl-29414372

ABSTRACT

Temuco is a mid-size city representative of severe wood smoke pollution in southern Chile; however, little is known about the indoor air quality in this region. A field measurement campaign at 63 households in the Temuco urban area was conducted in winter 2014 and is reported here. In this study, indoor and outdoor (24-hr) PM2.5 and its elemental composition were measured and compared. Infiltration parameters and outdoor/indoor contributions to indoor PM2.5 were also determined. A statistical evaluation of how various air quality interventions and household features influence indoor PM2.5 was also performed. This study determined median indoor and outdoor PM2.5 concentrations of 44.4 and 41.8 µg/m3, respectively. An average infiltration factor (0.62 ±â€¯0.06) was estimated using sulfur as a tracer species. Using a simple mass balance approach, median indoor and outdoor contributions to indoor PM2.5 concentrations were then estimated as 12.5 and 26.5 µg/m3, respectively; therefore, 68% of indoor PM2.5 comes from outdoor infiltration. This high percentage is due to high outdoor pollution and relatively high household air exchange rates (median: 1.06 h-1). This study found that S, Br and Rb were dominated by outdoor contributions, while Si, Ca, Ti, Fe and As originated from indoor sources. Using continuous indoor and outdoor PM2.5 measurements, a median indoor source strength of 75 µg PM2.5/min was estimated for the diurnal period, similar to literature results. For the evening period, the median estimate rose to 135 µg PM2.5/min, reflecting a more intense wood burning associated to cooking and space heating at night. Statistical test results (at the 90% confidence level) support the ongoing woodstove replacement program (reducing emissions) and household weatherization subsidies (reducing heating demand) for improving indoor air quality in southern Chile, and suggest that a cookstove improvement program might be helpful as well.


Subject(s)
Air Pollutants/analysis , Air Pollution, Indoor/analysis , Cooking , Environmental Monitoring , Particulate Matter/analysis , Wood , Air Pollution/analysis , Air Pollution, Indoor/statistics & numerical data , Chile , Cities , Heating , Humans , Seasons
6.
J Air Waste Manag Assoc ; 67(9): 1020-1035, 2017 09.
Article in English | MEDLINE | ID: mdl-28541823

ABSTRACT

Most homes in the Navajo Nation use wood as their primary heating fuel, often in combination with locally mined coal. Previous studies observed health effects linked to this solid-fuel use in several Navajo communities. Emission factors (EFs) for common fuels used by the Navajo have not been reported using a relevant stove type. In this study, two softwoods (ponderosa pine and Utah juniper) and two high-volatile bituminous coals (Black Mesa and Fruitland) were tested with an in-use residential conventional wood stove (homestove) using a modified American Society for Testing and Materials/U.S. Environmental Protection Agency (ASTM/EPA) protocol. Filter sampling quantified PM2.5 (particulate matter with an aerodynamic diameter ≤2.5 µm) and organic (OC) and elemental (EC) carbon in the emissions. Real-time monitoring quantified carbon monoxide (CO), carbon dioxide (CO2), and total suspended particles (TSP). EFs for these air pollutants were developed and normalized to both fuel mass and energy consumed. In general, coal had significantly higher mass EFs than wood for all pollutants studied. In particular, coal emitted, on average, 10 times more PM2.5 than wood on a mass basis, and 2.4 times more on an energy basis. The EFs developed here were based on fuel types, stove design, and operating protocols relevant to the Navajo Nation, but they could be useful to other Native Nations with similar practices, such as the nearby Hopi Nation. IMPLICATIONS: Indoor wood and coal combustion is an important contributor to public health burdens in the Navajo Nation. Currently, there exist no emission factors representative of Navajo homestoves, fuels, and practices. This study developed emission factors for PM2.5, OC, EC, CO, and CO2 using a representative Navajo homestove. These emission factors may be utilized in regional-, national-, and global-scale health and environmental models. Additionally, the protocols developed and results presented here may inform on-going stove design of the first EPA-certified wood and coal combination stove.


Subject(s)
Air Pollutants/analysis , Heating , Household Articles , Housing , American Indian or Alaska Native , Carbon/analysis , Carbon Dioxide/analysis , Carbon Monoxide/analysis , Coal , Environmental Monitoring , Humans , Juniperus , Particulate Matter/analysis , Pinus , Utah , Wood
7.
Environ Int ; 92-93: 97-105, 2016.
Article in English | MEDLINE | ID: mdl-27065310

ABSTRACT

Indoor and outdoor endotoxin in PM2.5 was measured for the very first time in Santiago, Chile, in spring 2012. Average endotoxin concentrations were 0.099 and 0.094 [EU/m(3)] for indoor (N=44) and outdoor (N=41) samples, respectively; the indoor-outdoor correlation (log-transformed concentrations) was low: R=-0.06, 95% CI: (-0.35 to 0.24), likely owing to outdoor spatial variability. A linear regression model explained 68% of variability in outdoor endotoxins, using as predictors elemental carbon (a proxy of traffic emissions), chlorine (a tracer of marine air masses reaching the city) and relative humidity (a modulator of surface emissions of dust, vegetation and garbage debris). In this study, for the first time a potential source contribution function (PSCF) was applied to outdoor endotoxin measurements. Wind trajectory analysis identified upwind agricultural sources as contributors to the short-term, outdoor endotoxin variability. Our results confirm an association between combustion particles from traffic and outdoor endotoxin concentrations. For indoor endotoxins, a predictive model was developed but it only explained 44% of endotoxin variability; the significant predictors were tracers of indoor PM2.5 dust (Si, Ca), number of external windows and number of hours with internal doors open. Results suggest that short-term indoor endotoxin variability may be driven by household dust/garbage production and handling. This would explain the modest predictive performance of published models that use answers to household surveys as predictors. One feasible alternative is to increase the sampling period so that household features would arise as significant predictors of long-term airborne endotoxin levels.


Subject(s)
Air Pollutants/chemistry , Air Pollution, Indoor/analysis , Cities , Endotoxins/administration & dosage , Endotoxins/chemistry , Environmental Exposure/statistics & numerical data , Chile , Dust/analysis , Humans , Seasons
8.
Environ Sci Technol ; 48(16): 9852-8, 2014 Aug 19.
Article in English | MEDLINE | ID: mdl-25020243

ABSTRACT

The developing world faces dual crises of escalating energy demand and lack of urban sanitation infrastructure that pose significant burdens on the environment. This article presents results of a study evaluating the feasibility of using human feces-derived char as a solid fuel for heating and cooking and a potential way to address both crises. The study determined the energy content and the elemental composition of chars pyrolyzed at 300, 450, and 750 °C. Fecal chars made at 300 °C were found to be similar in energy content to wood chars and bituminous coal, having a heating value of 25.6 ± 0.08 MJ/kg, while fecal chars made at 750 °C had an energy content of 13.8 ± 0.48 MJ/kg. The higher heating values of the studied chars were evaluated using their elemental composition and a published predictive model; results found good agreement between the measured and predicted values. Fecal chars made at low temperatures were briquetted with molasses/lime and starch binders. Briquettes made with 10% starch had an average impact resistance index of 79 and a higher heating value of 25 MJ/kg. These values are comparable to those of commercial charcoal briquettes, making fecal char briquettes a potential substitute that also contributes to the preservation of the environment.


Subject(s)
Charcoal/chemistry , Feces/chemistry , Waste Products , Elements , Gasoline/analysis , Heating , Humans , Models, Theoretical , Thermodynamics
9.
Environ Health ; 5: 22, 2006 Jul 21.
Article in English | MEDLINE | ID: mdl-16859546

ABSTRACT

BACKGROUND: The objective of this study was to assess the correlation between childhood asthma and potential risk factors, especially exposure to indoor allergens, in a Native American population. METHODS: A case-control study of St. Regis Mohawk tribe children ages 2-14 years, 25 diagnosed with asthma and 25 controls was conducted. Exposure was assessed based on a personal interview and measurement of mite and cat allergens (Der p 1, Fel d 1) in indoor dust. RESULTS: A non-significant increased risk of childhood asthma was associated with self-reported family history of asthma, childhood environmental tobacco smoke exposure, and air pollution. There was a significant protective effect of breastfeeding against current asthma in children less than 14 years (5.2 fold lower risk). About 80% of dust mite and 15% of cat allergen samples were above the threshold values for sensitization of 2 and 1 mug/g, respectively. The association between current asthma and exposure to dust mite and cat allergens was positive but not statistically significant. CONCLUSION: This research identified several potential indoor and outdoor risk factors for asthma in Mohawks homes, of which avoidance may reduce or delay the development of asthma in susceptible individuals.


Subject(s)
Air Pollution, Indoor/adverse effects , Allergens/adverse effects , Asthma/epidemiology , Asthma/etiology , Indians, North American , Adolescent , Animals , Case-Control Studies , Cats , Child , Child, Preschool , Female , Humans , Incidence , Male , New York/epidemiology , Pyroglyphidae , Risk Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...