Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Microb Ecol ; 86(3): 1773-1788, 2023 Oct.
Article in English | MEDLINE | ID: mdl-36754866

ABSTRACT

Bacteria can live in a variety of interkingdom communities playing key ecological roles. The microbiome of leaf-cutting attine ant colonies are a remarkable example of such communities, as they support ants' metabolic processes and the maintenance of ant-fungus gardens. Studies on this topic have explored the bacterial community of the whole fungus garden, without discerning bacterial groups associated with the nutrient storage structures (gongylidia) of ant fungal cultivars. Here we studied bacteria isolated from the surface of gongylidia in the cultivars of Atta sexdens and Acromyrmex coronatus, to assess whether the bacterial community influences the biology of the fungus. A total of 10 bacterial strains were isolated from gongylidia (Bacillus sp., Lysinibacillus sp., Niallia sp., Staphylococcus sp., Paenibacillus sp., Pantoea sp., Staphylococcus sp., and one Actinobacteria). Some bacterial isolates increased gongylidia production and fungal biomass while others had inhibitory effects. Eight bacterial strains were confirmed to form biofilm-like structures on the fungal cultivar hyphae. They also showed auxiliary metabolic functions useful for the development of the fungal garden such as phosphate solubilization, siderophore production, cellulose and chitin degradation, and antifungal activity against antagonists of the fungal cultivar. Bacteria-bacteria interaction assays revealed heterogeneous behaviors including synergism and competition, which might contribute to regulate the community structure inside the garden. Our results suggest that bacteria and the ant fungal cultivar interact directly, across a continuum of positive and negative interactions within the community. These complex relationships could ultimately contribute to the stability of the ant-fungus mutualism.


Subject(s)
Actinobacteria , Ants , Animals , Ants/microbiology , Bacteria , Hyphae , Cellulose , Symbiosis
2.
IMA Fungus ; 12(1): 23, 2021 Aug 24.
Article in English | MEDLINE | ID: mdl-34429165

ABSTRACT

Escovopsis is a diverse group of fungi, which are considered specialized parasites of the fungal cultivars of fungus-growing ants. The lack of a suitable taxonomic framework and phylogenetic inconsistencies have long hampered Escovopsis research. The aim of this study is to reassess the genus Escovopsis using a taxonomic approach and a comprehensive multilocus phylogenetic analysis, in order to set the basis of the genus systematics and the stage for future Escovopsis research. Our results support the separation of Escovopsis into three distinct genera. In light of this, we redefine Escovopsis as a monophyletic clade whose main feature is to form terminal vesicles on conidiophores. Consequently, E. kreiselii and E. trichodermoides were recombined into two new genera, Sympodiorosea and Luteomyces, as S. kreiselii and L. trichodermoides, respectively. This study expands our understanding of the systematics of Escovopsis and related genera, thereby facilitating future research on the evolutionary history, taxonomic diversity, and ecological roles of these inhabitants of the attine ant colonies.

3.
MycoKeys ; (46): 97-118, 2019.
Article in English | MEDLINE | ID: mdl-30814906

ABSTRACT

Escovopsis (Ascomycota: Hypocreales, Hypocreaceae) is the only known parasite of the mutualistic fungi cultivated by fungus-growing ants (Formicidae: Myrmicinae: Attini: Attina, the "attines"). Despite its ecological role, the taxonomy and systematics of Escovopsis have been poorly addressed. Here, based on morphological and phylogenetic analyses with three molecular markers (internal transcribed spacer, large subunit ribosomal RNA and the translation elongation factor 1-alpha), we describe Escovopsisclavatus and E.multiformis as new species isolated from fungus gardens of Apterostigma ant species. Our analysis shows that E.clavatus and E.multiformis belong to the most derived Escovopsis clade, whose main character is the presence of conidiophores with vesicles. Nevertheless, the most outstanding feature of both new species is the presence of a swollen region in the central hypha of the conidiophore named swollen cell, which is absent in all previously described Escovopsis species. The less derived Escovopsis clades lack vesicles and their phylogenetic position within the Hypocreaceae still remains unclear. Considering the high genetic diversity in Escovopsis, the description of these new species adds barely two pieces to a huge taxonomic puzzle; however, this discovery is an important piece for building the systematics of this group of fungi.

4.
Microb Ecol ; 77(1): 12-24, 2019 Jan.
Article in English | MEDLINE | ID: mdl-29916010

ABSTRACT

Extreme environments such as the Antarctic can lead to the discovery of new microbial taxa, as well as to new microbial-derived natural products. Considering that little is known yet about the diversity and the genetic resources present in these habitats, the main objective of this study was to evaluate the fungal communities from extreme environments collected at Aldmiralty Bay (Antarctica). A total of 891 and 226 isolates was obtained from soil and marine sediment samples, respectively. The most abundant isolates from soil samples were representatives of the genera Leucosporidium, Pseudogymnoascus, and a non-identified Ascomycota NIA6. Metschnikowia sp. was the most abundant taxon from marine samples, followed by isolates from the genera Penicillium and Pseudogymnoascus. Many of the genera were exclusive in marine sediment or terrestrial samples. However, representatives of eight genera were found in both types of samples. Data from non-metric multidimensional scaling showed that each sampling site is unique in their physical-chemical composition and fungal community. Biotechnological potential in relation to enzymatic production at low/moderate temperatures was also investigated. Ligninolytic enzymes were produced by few isolates from root-associated soil. Among the fungi isolated from marine sediments, 16 yeasts and nine fungi showed lipase activity and three yeasts and six filamentous fungi protease activity. The present study permitted increasing our knowledge on the diversity of fungi that inhabit the Antarctic, finding genera that have never been reported in this environment before and discovering putative new species of fungi.


Subject(s)
Fungi/classification , Fungi/isolation & purification , Geologic Sediments/microbiology , Seawater/microbiology , Soil Microbiology , Antarctic Regions , Ascomycota/classification , Ascomycota/isolation & purification , Basidiomycota/classification , Basidiomycota/isolation & purification , Bays , Biodiversity , Cold Temperature , Extremophiles , Fungi/enzymology , Fungi/genetics , Islands , Lipase/metabolism , Peptide Hydrolases/metabolism , Phylogeny , Species Specificity
5.
Antonie Van Leeuwenhoek ; 109(5): 633-51, 2016 May.
Article in English | MEDLINE | ID: mdl-26885975

ABSTRACT

Fungus-growing "attine" ants forage diverse substrates to grow fungi for food. In addition to the mutualistic fungal partner, the colonies of these insects harbor a rich microbiome composed of bacteria, filamentous fungi and yeasts. Previous work reported some Trichoderma species in the fungus gardens of leafcutter ants. However, no studies systematically addressed the putative association of Trichoderma with attine ants, especially in non-leafcutter ants. Here, a total of 62 strains of Trichoderma were analyzed using three molecular markers (ITS, tef1 and rpb2). In addition, 30 out of 62 strains were also morphologically examined. The strains studied correspond to the largest sampling carried out so far for Trichoderma in the attine ant environment. Our results revealed the richness of Trichoderma in this environment, since we found 20 Trichoderma species, including three new taxa described in the present work (Trichoderma attinorum, Trichoderma texanum and Trichoderma longifialidicum spp. nov.) as well as a new phylogenetic taxon (LESF 545). Moreover, we show that all 62 strains grouped within different clades across the Trichoderma phylogeny, which are identical or closely related to strains derived from several other environments. This evidence supports the transient nature of the genus Trichoderma in the attine ant colonies. The discovery of three new species suggests that the dynamic foraging behavior of these insects might be responsible for accumulation of transient fungi into their colonies, which might hold additional fungal taxa still unknown to science.


Subject(s)
Ants/microbiology , Trichoderma/classification , Animals , Base Sequence , Environmental Microbiology , Microbiota , Phylogeny , Polymerase Chain Reaction/methods , Soil Microbiology , Spores, Fungal/cytology , Symbiosis , Trichoderma/cytology , Trichoderma/genetics , Trichoderma/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...