Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biology (Basel) ; 2(3): 1034-53, 2013 Jul 26.
Article in English | MEDLINE | ID: mdl-24833055

ABSTRACT

Measurement of gases entrapped in clean ice from basal portions of the Taylor Glacier, Antarctica, revealed that CO2 ranged from 229 to 328 ppmv and O2 was near 20% of the gas volume. In contrast, vertically adjacent sections of the sediment laden basal ice contained much higher concentrations of CO2 (60,000 to 325,000 ppmv), whereas O2 represented 4 to 18% of the total gas volume. The deviation in gas composition from atmospheric values occurred concurrently with increased microbial cell concentrations in the basal ice profile, suggesting that in situ microbial processes (i.e., aerobic respiration) may have altered the entrapped gas composition. Molecular characterization of 16S rRNA genes amplified from samples of the basal ice indicated a low diversity of bacteria, and most of the sequences characterized (87%) were affiliated with the phylum, Firmicutes. The most abundant phylotypes in libraries from ice horizons with elevated CO2 and depleted O2 concentrations were related to the genus Paenisporosarcina, and 28 isolates from this genus were obtained by enrichment culturing. Metabolic experiments with Paenisporosarcina sp. TG14 revealed its capacity to conduct macromolecular synthesis when frozen in water derived from melted basal ice samples and incubated at -15 °C. The results support the hypothesis that the basal ice of glaciers and ice sheets are cryospheric habitats harboring bacteria with the physiological capacity to remain metabolically active and biogeochemically cycle elements within the subglacial environment.

2.
Proc Natl Acad Sci U S A ; 105(48): 18854-9, 2008 Dec 02.
Article in English | MEDLINE | ID: mdl-19028877

ABSTRACT

Biological ice nucleators (IN) function as catalysts for freezing at relatively warm temperatures (warmer than -10 degrees C). We examined the concentration (per volume of liquid) and nature of IN in precipitation collected from Montana and Louisiana, the Alps and Pyrenees (France), Ross Island (Antarctica), and Yukon (Canada). The temperature of detectable ice-nucleating activity for more than half of the samples was > or = -5 degrees C based on immersion freezing testing. Digestion of the samples with lysozyme (i.e., to hydrolyze bacterial cell walls) led to reductions in the frequency of freezing (0-100%); heat treatment greatly reduced (95% average) or completely eliminated ice nucleation at the measured conditions in every sample. These behaviors were consistent with the activity being bacterial and/or proteinaceous in origin. Statistical analysis revealed seasonal similarities between warm-temperature ice-nucleating activities in snow samples collected over 7 months in Montana. Multiple regression was used to construct models with biogeochemical data [major ions, total organic carbon (TOC), particle, and cell concentration] that were accurate in predicting the concentration of microbial cells and biological IN in precipitation based on the concentration of TOC, Ca(2+), and NH(4)(+), or TOC, cells, Ca(2+), NH(4)(+), K(+), PO(4)(3-), SO(4)(2-), Cl(-), and HCO(3)(-). Our results indicate that biological IN are ubiquitous in precipitation and that for some geographic locations the activity and concentration of these particles is related to the season and precipitation chemistry. Thus, our research suggests that biological IN are widespread in the atmosphere and may affect meteorological processes that lead to precipitation.


Subject(s)
Geography , Ice , Rain/chemistry , Seasons , Snow/chemistry , Antarctic Regions , Chemical Precipitation , Cluster Analysis , Cold Climate , Crystallization , France , Louisiana , Montana , Rain/microbiology , Snow/microbiology , Temperature , Water/analysis , Yukon Territory
SELECTION OF CITATIONS
SEARCH DETAIL
...