Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Mol Model ; 30(3): 66, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38345753

ABSTRACT

CONTEXT: The study of molecular aggregation effects on the electronic spectrum is essential for the development of optoelectronic devices. However, investigating the entire valence absorption spectrum of aggregates using quantum mechanical methods is a challenging task. In this work, we perform systematic simulations of the absorption spectrum of benzene molecular clusters up to 35 eV applying two approaches based on time-dependent density functional theory. The results show that depending on the dimer packing, different energy shifts occur for the symmetry allowed [Formula: see text] transition, in comparison to the monomer. The transition intensity increases for the band around 6 eV for larger aggregates from the monomer to dimers and tetramer, indicating the occurrence of the symmetry forbidden (in [Formula: see text] point group) [Formula: see text] [Formula: see text] transition. The benzene crystal exhibits a large redshift following the experimental spectrum. Also, the continuum regions of all spectra show a good agreement with the experiments both in gas and solid phases. METHODS: Geometry optimization of the monomer was carried out with Gaussian 09 software using the PBE0/def2-TZVP level of theory. We used dimers and tetramer molecular geometries extracted from the experimental crystal structure. The absorption spectra were directly obtained by the Liouville-Lanczos TDDFT approach with plane waves basis set or indirectly by TDDFT pseudo-spectra calculated in a [Formula: see text] basis followed by analytic continuation procedure to obtain complex polarizability. The former is available at Quantum ESPRESSO, and the latter was calculated using Gaussian 09 with the post-processing performed with a code previously developed in our group.

2.
Phys Chem Chem Phys ; 25(37): 25746-25760, 2023 Sep 27.
Article in English | MEDLINE | ID: mdl-37724022

ABSTRACT

The discovery of C60, C60+, and C70 in the interstellar medium has ignited a profound interest in the astrochemistry of fullerene and related systems. In particular, the presence of diffuse interstellar bands and their association with C60+ has led to the hypothesis that hydrogenated derivatives, known as fulleranes, may also exist in the interstellar medium and contribute to these bands. In this study, we systematically investigated the structural and spectroscopic properties of C60Hn+q (n = 0-4, q = 0,1) using an automated global minimum search and density functional theory calculations. Our results revealed novel global minimum structures for C60H2 and C60H4, distinct from previous reports. Notably, all hydrogenated fullerenes exhibited lower ionization potentials and higher proton affinities compared to C60. From an astrochemical perspective, our results exposed the challenges in establishing definitive spectroscopic criteria for detecting fulleranes using mid-infrared and UV-Vis spectroscopies. However, we successfully identified distinct electronic transitions in the near-infrared range that serve as distinctive signatures of cationic fulleranes. We strongly advocate for further high-resolution experimental studies to fully explore the potential of these transitions for the interstellar detection of fulleranes.

SELECTION OF CITATIONS
SEARCH DETAIL
...