Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Food Prot ; 82(12): 2038-2043, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31692393

ABSTRACT

It is estimated that nontyphoidal Salmonella causes approximately 1 million illnesses and 378 deaths per year in the United States. Reduction of Salmonella-related foodborne infections can be achieved through application of food antimicrobials. Essential oils in combination with other antimicrobials can be added to food products to reduce the levels of the organism below the infectious dose for healthy individuals. The purpose of this study was to investigate the antimicrobial efficacy of white mustard essential oil (WMEO) against serovars of Salmonella and its potential to be used with carvacrol or thymol to control Salmonella. Results showed that WMEO at the highest concentration of 0.84% (v/v) compared with the positive control had approximately a 6- to 7-log reduction for all serovars. It was found that no difference in susceptibility existed among the serovars tested (P > 0.05). In addition, the MICs were determined to be 0.5, 0.02, and 0.02% for WMEO, carvacrol, and thymol, respectively, against Salmonella Typhimurium. The fractional inhibitory concentration index was calculated. A score of 1 indicated an additive effect occurred when WMEO was combined with thymol or carvacrol. Combining WMEO with carvacrol or thymol indicated that the concentration of individual essential oils needed to inhibit Salmonella can be reduced using these combinations and warrants further study to determine potential use in controlling Salmonella in commercial food products.


Subject(s)
Cymenes , Food Microbiology , Oils, Volatile , Sinapis , Thymol , Anti-Infective Agents/pharmacology , Cymenes/pharmacology , Drug Interactions , Food Microbiology/methods , Microbial Sensitivity Tests , Oils, Volatile/pharmacology , Sinapis/chemistry , Thymol/pharmacology
2.
J Food Prot ; 78(8): 1467-71, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26219359

ABSTRACT

Produce has been associated with a rising number of foodborne illness outbreaks. While much produce is consumed raw, some is treated with mild heat, such as blanching or cooking. The objectives of this research were to compare the thermal inactivation kinetics of Listeria monocytogenes, Salmonella enterica, Shiga toxin-producing Escherichia coli (STEC) O157:H7, and non-O157 STEC in phosphate-buffered saline (PBS; pH 7.2) and a spinach homogenate and to provide an estimate of the safety of mild heat processes for spinach. Five individual strains of S. enterica, L. monocytogenes, STEC O157:H7, and non-O157 STEC were tested in PBS in 2-ml glass vials, and cocktails of the organisms were tested in blended spinach in vacuum-sealed bags. For Listeria and Salmonella at 56 to 60°C, D-values in PBS ranged from 4.42 ± 0.94 to 0.35 ± 0.03 min and 2.11 ± 0.14 to 0.16 ± 0.03 min, respectively. D-values at 54 to 58°C were 5.18 ± 0.21 to 0.53 ± 0.04 min for STEC O157:H7 and 5.01 ± 0.60 to 0.60 ± 0.13 min for non-O157 STEC. In spinach at 56 to 60°C, Listeria D-values were 11.77 ± 2.18 to 1.22 ± 0.12 min and Salmonella D-values were 3.51 ± 0.06 to 0.47 ± 0.06 min. D-values for STEC O157:H7 and non-O157 STEC were 7.21 ± 0.17 to 1.07 ± 0.11 min and 5.57 ± 0.38 to 0.99 ± 0.07 min, respectively, at 56 to 60°C. In spinach, z-values were 4.07 ± 0.16, 4.59 ± 0.26, 4.80 ± 0.92, and 5.22 ± 0.20°C for Listeria, Salmonella, STEC O157:H7, and non-O157 STEC, respectively. Results indicated that a mild thermal treatment of blended spinach at 70°C for less than 1 min would result in a 6-log reduction of all pathogens tested. These findings may assist the food industry in the design of suitable mild thermal processes to ensure food safety.


Subject(s)
Escherichia coli O157/physiology , Escherichia coli/physiology , Hot Temperature , Listeria monocytogenes/physiology , Salmonella enterica/physiology , Spinacia oleracea/microbiology , Food Microbiology , Food Safety , Kinetics , Salmonella
SELECTION OF CITATIONS
SEARCH DETAIL
...