Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Language
Publication year range
1.
Front Physiol ; 14: 1242177, 2023.
Article in English | MEDLINE | ID: mdl-38274042

ABSTRACT

Sarcomere lengths are non-uniform on all structural levels of mammalian skeletal muscle. These non-uniformities have been associated with a variety of mechanical properties, including residual force enhancement and depression, creep, increased force capacity, and extension of the plateau of the force-length relationship. However, the nature of sarcomere length non-uniformities has not been explored systematically. The purpose of this study was to determine the properties of sarcomere length non-uniformities in active and passive muscle. Single myofibrils of rabbit psoas (n = 20; with 412 individual sarcomeres) were subjected to three activation/deactivation cycles and individual sarcomere lengths were measured at 4 passive and 3 active points during the activation/deactivation cycles. The myofibrils were divided into three groups based on their initial average sarcomere lengths: short, intermediate, and long average sarcomere lengths of 2.7, 3.2, and 3.6 µm. The primary results were that sarcomere length non-uniformities did not occur randomly but were governed by some structural and/or contractile properties of the sarcomeres and that sarcomere length non-uniformities increased when myofibrils went from the passive to the active state. We propose that the mechanisms that govern the systematic sarcomere lengths non-uniformities observed in active and passive myofibrils may be associated with the variable number of contractile proteins and the variable number and the adjustable stiffness of titin filaments in individual sarcomeres.

2.
Biomech Model Mechanobiol ; 11(7): 983-93, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22234779

ABSTRACT

Experimental findings indicate that in-situ chondrocytes die readily following impact loading, but remain essentially unaffected at low (non-impact) strain rates. This study was aimed at identifying possible causes for cell death in impact loading by quantifying chondrocyte mechanics when cartilage was subjected to a 5% nominal tissue strain at different strain rates. Multi-scale modelling techniques were used to simulate cartilage tissue and the corresponding chondrocytes residing in the tissue. Chondrocytes were modelled by accounting for the cell membrane, pericellular matrix and pericellular capsule. The results suggest that cell deformations, cell fluid pressures and fluid flow velocity through cells are highest at the highest (impact) strain rate, but they do not reach damaging levels. Tangential strain rates of the cell membrane were highest at the highest strain rate and were observed primarily in superficial tissue cells. Since cell death following impact loading occurs primarily in superficial zone cells, we speculate that cell death in impact loading is caused by the high tangential strain rates in the membrane of superficial zone cells causing membrane rupture and loss of cell content and integrity.


Subject(s)
Cartilage/metabolism , Chondrocytes/cytology , Algorithms , Biomechanical Phenomena , Cell Membrane/metabolism , Computer Simulation , Elasticity , Finite Element Analysis , Humans , Models, Biological , Models, Statistical , Models, Theoretical , Osteoarthritis/pathology , Pressure , Software , Stress, Mechanical , Tensile Strength , Time Factors
3.
Clinics (Sao Paulo) ; 66(8): 1431-6, 2011.
Article in English | MEDLINE | ID: mdl-21915496

ABSTRACT

INTRODUCTION: Although previous studies have been performed on cartilage explant cultures, the generalized dynamics of cartilage metabolism after extraction from the host are still poorly understood due to differences in the experimental setups across studies, which in turn prevent building a complete picture. METHODS: In this study, we investigated the response of cartilage to the trauma sustained during extraction and determined the time needed for the cartilage to stabilize. Explants were extracted aseptically from bovine metacarpal-phalangeal joints and cultured for up to 17 days. RESULTS: The cell viability, cell number, proteoglycan content, and collagen content of the harvested explants were analyzed at 0, 2, 10, and 17 days after explantation. A high percentage of the cartilage explants were found to be viable. The cell density initially increased significantly but stabilized after two days. The proteoglycan content decreased gradually over time, but it did not decrease to a significant level due to leakage through the distorted peripheral collagen network and into the bathing medium. The collagen content remained stable for most of the culture period until it dropped abruptly on day 17. CONCLUSION: Overall, the tested cartilage explants were sustainable over long-term culture. They were most stable from day 2 to day 10. The degradation of the collagen on day 17 did not reach diseased levels, but it indicated the potential of the cultures to develop into degenerated cartilage. These findings have implications for the application of cartilage explants in pathophysiological fields.


Subject(s)
Cartilage, Articular/metabolism , Collagen/analysis , Proteoglycans/analysis , Animals , Cartilage, Articular/chemistry , Cartilage, Articular/cytology , Cartilage, Articular/drug effects , Cattle , Cell Count , Cell Survival , Collagen/metabolism , Culture Techniques , Proteoglycans/metabolism , Time Factors
4.
Clinics ; 66(8): 1431-1436, 2011. ilus
Article in English | LILACS | ID: lil-598400

ABSTRACT

INTRODUCTION: Although previous studies have been performed on cartilage explant cultures, the generalized dynamics of cartilage metabolism after extraction from the host are still poorly understood due to differences in the experimental setups across studies, which in turn prevent building a complete picture. METHODS: In this study, we investigated the response of cartilage to the trauma sustained during extraction and determined the time needed for the cartilage to stabilize. Explants were extracted aseptically from bovine metacarpal-phalangeal joints and cultured for up to 17 days. RESULTS: The cell viability, cell number, proteoglycan content, and collagen content of the harvested explants were analyzed at 0, 2, 10, and 17 days after explantation. A high percentage of the cartilage explants were found to be viable. The cell density initially increased significantly but stabilized after two days. The proteoglycan content decreased gradually over time, but it did not decrease to a significant level due to leakage through the distorted peripheral collagen network and into the bathing medium. The collagen content remained stable for most of the culture period until it dropped abruptly on day 17. CONCLUSION: Overall, the tested cartilage explants were sustainable over long-term culture. They were most stable from day 2 to day 10. The degradation of the collagen on day 17 did not reach diseased levels, but it indicated the potential of the cultures to develop into degenerated cartilage. These findings have implications for the application of cartilage explants in pathophysiological fields.


Subject(s)
Animals , Cattle , Cartilage, Articular/metabolism , Collagen/analysis , Proteoglycans/analysis , Cell Count , Cell Survival , Culture Techniques , Cartilage, Articular/chemistry , Cartilage, Articular/cytology , Cartilage, Articular/drug effects , Collagen/metabolism , Proteoglycans/metabolism , Time Factors
5.
Acta Bioeng Biomech ; 11(4): 37-43, 2009.
Article in English | MEDLINE | ID: mdl-20405814

ABSTRACT

Conventionally, patellar tendon-bearing (PTB) sockets, which need high dexterity of prosthetist, are widely used. Lack of chartered and experienced prosthetist has often led to painful experience of wearing prosthesis and this will in turn deter the patients to wear the prosthesis, which will further aggravate stump shrinkage. Thus, the hydrostatic socket which demands relatively lower level of fabricating skill is proposed to replace the PTB socket in order to produce the equivalent, if not better, quality of support to the amputee patients. Both sockets' pressure profiles are studied and compared using finite element analysis (FEA) software. Three-dimensional models of both sockets were developed using MIMICS software. The analysis results showed that hydrostatic socket did exhibit more uniform pressure profiles than that of PTB socket. PTB socket showed pressure concentration near the proximal brim of the socket and also at the distal fibula. It was also found that the pressure magnitude in hydrostatic socket is relatively lower than that of PTB socket.


Subject(s)
Patellar Ligament/physiopathology , Amputation Stumps/physiopathology , Amputation Stumps/surgery , Amputees/rehabilitation , Artificial Limbs , Biomechanical Phenomena , Finite Element Analysis , Humans , Hydrostatic Pressure , Malaysia , Models, Biological , Patellar Ligament/surgery , Weight-Bearing/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...