Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Med Vet Entomol ; 37(4): 745-753, 2023 12.
Article in English | MEDLINE | ID: mdl-37427707

ABSTRACT

The cattle tick Rhipicephalus microplus (Acari: Ixodidae) has demonstrated its ability to increase its distribution raising spatially its importance as a vector for zoonotic hemotropic pathogens. In this study, a global ecological niche model of R. microplus was built in different scenarios using Representative Concentration Pathway (RCP), Socio-Economic Pathway (SSP), and a climatic dataset to determine where the species could establish itself and thus affect the variability in the presentation of the hemotropic diseases they transmit. America, Africa and Oceania showed a higher probability for the presence of R. microplus in contrast to some countries in Europe and Asia in the ecological niche for the current period (1970-2000), but with the climate change, there was an increase in the ratio between the geographic range preserved between the RCP and SSP scenarios obtaining the greatest gain in the interplay of RCP4.5-SSP245. Our results allow to determine future changes in the distribution of the cattle tick according to the increase in environmental temperature and socio-economic development influenced by human development activities and trends; this work explores the possibility of designing integral maps between the vector and specific diseases.


Subject(s)
Cattle Diseases , Ixodidae , Rhipicephalus , Tick Infestations , Humans , Cattle , Animals , Climate Change , Tick Infestations/veterinary
2.
Med Vet Entomol ; 34(4): 440-451, 2020 12.
Article in English | MEDLINE | ID: mdl-32697402

ABSTRACT

The Phyllosoma complex is a Triatominae (Hemiptera: Reduviidae) group of medical importance involved in Trypanosoma cruzi (Kinetoplastida: Trypanosomatidae) transmission. Most of the members of this group are endemic and sympatric species with distribution in Mexico and the southern U.S.A. We employed MaxEnt to construct ecological niche models of nine species of Triatominae to test three hypothesis: (a) whether species with a broad climatic niche breadth occupy a broader geographical range than species with a narrow climatic breadth, (b) whether species with broad distribution present high degree of climatic fragmentation/isolation, which was tested through landscape metrics; and (c) whether the species share the same climatic niche space (niche conservatism) considered through an equivalence test implemented in ENMtools. Overall, our results suggest that the geographical distribution of this complex is influenced mainly by temperature seasonality where all suitable areas are places of current and potential transmission of T. cruzi. Niche breadth in the Phyllosoma complex is associated with the geographical distribution range, and the geographical range affects the climatic connectivity. We found no strong evidence of niche climatic divergence in members of this complex. We discuss the epidemiological implications of these results.


Subject(s)
Chagas Disease/transmission , Climate , Triatominae , Animals , Ecosystem , Geography , Insect Vectors/parasitology , Mexico/epidemiology , Models, Biological , Seasons , Temperature , Triatominae/parasitology , Trypanosoma cruzi
3.
Med Vet Entomol ; 33(1): 31-43, 2019 03.
Article in English | MEDLINE | ID: mdl-30039583

ABSTRACT

Nine sandfly species (Diptera: Psychodidae) are suspected or proven vectors of Leishmania spp. in the North and Central America region. The ecological niches for these nine species were modelled in three time periods and the overlaps for all time periods of the geographic predictions (G space), and of ecological dimensions using pairwise comparisons of equivalent niches (E space), were calculated. Two Nearctic, six Neotropical and one species in both bioregions occupied a reduced number of distribution areas. The ecological niche projections for most sandfly species other than Lutzomyia shannoni and Lutzomyia ovallesi have not expanded significantly since the Pleistocene. Only three species increase significantly to 2050, whereas all others remain stable. Lutzomyia longipalpis shared a similar ecological niche with more species than any other, although both L. longipalpis and Lutzomyia olmeca olmeca had conserved distributions over time. Climate change, at both regional and local levels, will play a significant role in the temporal and spatial distributions of sandfly species.


Subject(s)
Animal Distribution , Climate Change , Ecosystem , Insect Vectors/physiology , Psychodidae/physiology , Animals , Central America , Leishmania/physiology , North America
4.
Med Vet Entomol ; 32(1): 84-101, 2018 03.
Article in English | MEDLINE | ID: mdl-28887895

ABSTRACT

Climate change can influence the geographical range of the ecological niche of pathogens by altering biotic interactions with vectors and reservoirs. The distributions of 20 epidemiologically important triatomine species in North America were modelled, comparing the genetic algorithm for rule-set prediction (GARP) and maximum entropy (MaxEnt), with or without topographical variables. Potential shifts in transmission niche for Trypanosoma cruzi (Trypanosomatida: Trypanosomatidae) (Chagas, 1909) were analysed for 2050 and 2070 in Representative Concentration Pathway (RCP) 4.5 and RCP 8.5. There were no significant quantitative range differences between the GARP and MaxEnt models, but GARP models best represented known distributions for most species [partial-receiver operating characteristic (ROC) > 1]; elevation was an important variable contributing to the ecological niche model (ENM). There was little difference between niche breadth projections for RCP 4.5 and RCP 8.5; the majority of species shifted significantly in both periods. Those species with the greatest current distribution range are expected to have the greatest shifts. Positional changes in the centroid, although reduced for most species, were associated with latitude. A significant increase or decrease in mean niche elevation is expected principally for Neotropical 1 species. The impact of climate change will be specific to each species, its biogeographical region and its latitude. North American triatomines with the greatest current distribution ranges (Nearctic 2 and Nearctic/Neotropical) will have the greatest future distribution shifts. Significant shifts (increases or decreases) in mean elevation over time are projected principally for the Neotropical species with the broadest current distributions. Changes in the vector exposure threat to the human population were significant for both future periods, with a 1.48% increase for urban populations and a 1.76% increase for rural populations in 2050.


Subject(s)
Animal Distribution , Chagas Disease/transmission , Climate Change , Insect Vectors/physiology , Reduviidae/physiology , Trypanosoma cruzi/physiology , Animals , Chagas Disease/parasitology , Insect Vectors/parasitology , Mexico , Models, Biological , Reduviidae/parasitology , United States
5.
Med Vet Entomol ; 31(2): 123-131, 2017 06.
Article in English | MEDLINE | ID: mdl-28150865

ABSTRACT

The Peruvian Andes presents a climate suitable for many species of sandfly that are known vectors of leishmaniasis or bartonellosis, including Lutzomyia peruensis (Diptera: Psychodidae), among others. In the present study, occurrences data for Lu. peruensis were compiled from several items in the scientific literature from Peru published between 1927 and 2015. Based on these data, ecological niche models were constructed to predict spatial distributions using three algorithms [Support vector machine (SVM), the Genetic Algorithm for Rule-set Prediction (GARP) and Maximum Entropy (MaxEnt)]. In addition, the environmental requirements of Lu. peruensis and three niche characteristics were modelled in the context of future climate change scenarios: (a) potential changes in niche breadth; (b) shifts in the direction and magnitude of niche centroids, and (c) shifts in elevation range. The model identified areas that included environments suitable for Lu. peruensis in most regions of Peru (45.77%) and an average altitude of 3289 m a.s.l. Under climate change scenarios, a decrease in the distribution areas of Lu. peruensis was observed for all representative concentration pathways. However, the centroid of the species' ecological niche showed a northwest direction in all climate change scenarios. The information generated in this study may help health authorities responsible for the supervision of strategies to control leishmaniasis to coordinate, plan and implement appropriate strategies for each area of risk, taking into account the geographic distribution and potential dispersal of Lu. peruensis.


Subject(s)
Climate Change , Ecosystem , Insect Vectors/physiology , Leishmaniasis/transmission , Psychodidae/physiology , Animal Distribution , Animals , Leishmania/physiology , Leishmaniasis/parasitology , Models, Biological , Peru
6.
Med Vet Entomol ; 30(3): 310-20, 2016 09.
Article in English | MEDLINE | ID: mdl-27040367

ABSTRACT

Localized cutaneous leishmaniasis represents a public health problem in many areas of Mexico, especially in the Yucatan Peninsula. An understanding of vector ecology and bionomics is of great importance in evaluations of the transmission dynamics of Leishmania parasites. A field study was conducted in the county of Calakmul, state of Campeche, during the period from November 2006 to March 2007. Phlebotomine sandfly vectors were sampled using Centers for Disease Control light traps, baited Disney traps and Shannon traps. A total of 3374 specimens were captured in the two villages of Once de Mayo (93.8%) and Arroyo Negro (6.1%). In Once de Mayo, the most abundant species were Psathyromyia shannoni, Lutzomyia cruciata, Bichromomyia olmeca olmeca and Psychodopygus panamensis (all: Diptera: Psychodidae). The Shannon trap was by far the most efficient method of collection. The infection rate, as determined by Leishmania mexicana-specific polymerase chain reaction, was 0.3% in Once de Mayo and infected sandflies included Psy. panamensis, B. o. olmeca and Psa. shannoni. There were significant differences in human biting rates across sandfly species and month of sampling. Ecological niche modelling analyses showed an overall overlap of 39.1% for the four species in the whole state of Campeche. In addition, the finding of nine vector-reservoir pairs indicates a potential interaction. The roles of the various sandfly vectors in Calakmul are discussed.


Subject(s)
Insect Bites and Stings/epidemiology , Insect Vectors/physiology , Insect Vectors/parasitology , Leishmania mexicana/isolation & purification , Psychodidae/physiology , Psychodidae/parasitology , Animals , Biota , Ecosystem , Feeding Behavior , Female , Humans , Insect Bites and Stings/etiology , Leishmaniasis, Cutaneous/transmission , Mexico/epidemiology , Models, Biological , Polymerase Chain Reaction , Population Dynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...