Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Viruses ; 12(10)2020 10 15.
Article in English | MEDLINE | ID: mdl-33076368

ABSTRACT

Emerging pests and diseases are a major threat to food production worldwide. In a recent survey, Tomato torrado virus (ToTV) was identified on tomato crops in the Limpopo province of South Africa and a first report of the disease was published. In this follow-up study, the full genome sequence of a tomato-infecting isolate of ToTV from South Africa was elucidated. High-throughput sequencing was used to generate the full genome of ToTV infecting tomato crops in South Africa. The longest contig obtained for the RNA-1 and RNA-2 genome of ToTV was comprised of 7420 and 5381 nucleotides (nt), respectively. Blast analysis of the RNA-1 sequence of ToTV from South Africa (ToT-186) matched 99% to a Spanish and Polish isolate; the RNA-2 segment of ToTV from South Africa (ToT-186) matched 99% to ToTV isolates from Italy and Poland, respectively. The information presented in this study will go a long way towards better understanding the emergence and spread of ToTV and devising sustainable management of ToTV diseases.


Subject(s)
Genome, Viral , RNA, Viral/genetics , Secoviridae/genetics , Whole Genome Sequencing , Solanum lycopersicum/virology , Phylogeny , Plant Diseases/virology , South Africa
2.
PLoS One ; 14(7): e0220298, 2019.
Article in English | MEDLINE | ID: mdl-31339934

ABSTRACT

Criniviruses accumulate in the phloem tissue and damage crops by reducing chlorophyll which is essential for plant growth and development. Tomato chlorosis crinivirus (ToCV) is vectored by several whitefly species that damage tomato crops throughout the world. In South Africa, ToCV is a poorly studied pathogen of global economic importance. Therefore, a national survey was initiated to investigate the occurrence and distribution of criniviruses infecting tomato crops in South Africa. Whitefly infested tomato crops exhibiting interveinal leaf chlorosis and chlorotic flecking symptoms were assayed for crinivirus infections using a multiplex reverse transcription polymerase reaction (RT-PCR) approach to assess for the presence of crinivirus species that are known to infect solanaceous hosts. Next-generation sequencing (NGS) was used to generate the complete genome of ToCV from South Africa. Results from the survey indicated that ToCV is presently the only crinivirus species infecting tomatoes in South Africa. Blast analysis showed that the RNA-1 segment of ToCV from South Africa (ToCR1-186) matched 99% to Spanish isolates. On the other hand, the RNA-2 (ToCR2-186) segment matched 98% to a South Korean isolate and three Spanish isolates. Although recombination events were not detected, phylogenetic studies showed inconsistencies in the grouping of RNA-1 and RNA-2 segments for some of the ToCV isolates analyzed in this study. Therefore, we suggest the possibility of intraspecific reassortment. This is the first comprehensive study and full genome sequence of ToCV from South Africa. The information generated from this study is intended to raise awareness of ToCV infections on tomato crops in South Africa.


Subject(s)
Crinivirus/genetics , Plant Diseases/statistics & numerical data , Solanum lycopersicum/virology , Animals , Cloning, Molecular , Crinivirus/isolation & purification , DNA, Viral/analysis , DNA, Viral/genetics , Insect Vectors/virology , Molecular Epidemiology , Phylogeny , Plant Diseases/virology , Prevalence , South Africa/epidemiology , Whole Genome Sequencing
3.
Virus Genes ; 49(3): 466-76, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25303962

ABSTRACT

Potato Virus Y (PVY) is a pathogen of economic importance in pepper and other major crop species in the family Solanaceae. Three major PVY strain groups: O, C, and N, have been distinguished on the basis of genome sequencing. In this study, the first full-genome sequence of a PVY isolate (JVW-186) infecting pepper from the province of KwaZulu-Natal, Republic of South Africa is reported. The complete genome sequence of JVW-186 was assembled from overlapping RT-PCR clones using MEGA 5 software. Two ORFs were identified at position 186 and 2915 of the sequence encoding the viral polyprotein and the frameshift translated protein P3N-PIPO, respectively. RDP4 software confirmed three recombination breakpoints at position 343, 1365, and 9308 of the sequence. At each recombination event, a 1,021-bp fragment at the 5' end in the region of the P1/HC-Pro protein and a 392-bp fragment in the region of the coat protein shared a high sequence similarity of 91.8 and 98.89 % to the potato borne PVY(C) isolate PRI-509 and the PVY(O) isolate SASA-110, respectively. The non-recombinant fragment 1 (342-bp) clustered within the C clade of PVY isolates; however, the large 7,942-bp fragment 3 did not cluster within any of the clades. This suggests the possibility of a PVY isolate that has evolved due to the dynamics of selection pressure or the likelihood of an ancestral PVY strain.


Subject(s)
Capsicum/virology , Genome, Viral , Potyvirus/genetics , RNA, Viral/genetics , Sequence Analysis, DNA , Cluster Analysis , Molecular Sequence Data , Open Reading Frames , Phylogeny , Polyproteins/genetics , Potyvirus/classification , Potyvirus/isolation & purification , Recombination, Genetic , Sequence Homology, Amino Acid , South Africa , Viral Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...