Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Pharmacol Ther ; 115(5): 1114-1121, 2024 May.
Article in English | MEDLINE | ID: mdl-38229405

ABSTRACT

Three sickle cell disease (SCD) treatment strategies, stabilizing oxygenated hemoglobin (oxyHb), lowering 2,3-BPG, and inducing fetal hemoglobin (HbF) expression aim to prevent red blood cell (RBC) sickling by reducing tense-state sickle hemoglobin that contributes to polymer formation. Induction of 30% HbF is seen as the gold standard because 30% endogenous expression is associated with a lack of symptoms. However, the level of intervention required to achieve equivalent polymerization protection by the other strategies is uncertain, and there is little understanding of how these approaches could work in combination. We sought to develop an oxygen saturation model that could assess polymerization protection of all three approaches alone or in combination by extending the Monod-Wymann-Changeux model to include additional mechanisms. Applying the model to monotherapies suggests 51% sickle hemoglobin (HbS) occupancy with an oxyHb stabilizer or lowering RBC 2,3 BPG concentrations to 1.8 mM would produce comparable polymerization protection as 30% HbF. The model predictions are consistent with observed clinical response to the oxyHb stabilizer voxelotor and the 2,3-BPG reducer etavopivat. The model also suggests combination therapy will have added benefit in the case of dose limitations, as is the case for voxelotor, which the model predicts could be combined with 20% HbF or 2,3-BPG reduction to 3.75 mM to reach equivalent protection as 30% HbF. The proposed model represents a unified framework that is useful in supporting decisions in preclinical and early clinical development and capable of evolving with clinical experience to gain new and increasingly confident insights into treatment strategies for SCD.


Subject(s)
Anemia, Sickle Cell , Hemoglobin, Sickle , Pyrazoles , Humans , Anemia, Sickle Cell/drug therapy , Benzaldehydes/therapeutic use , Fetal Hemoglobin/metabolism , Pyrazines/therapeutic use
2.
Amyloid ; 30(2): 208-219, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36399070

ABSTRACT

BACKGROUND: Tafamidis inhibits progression of transthyretin (TTR) amyloid cardiomyopathy (ATTR-CM) by binding TTR tetramer and inhibiting dissociation to monomers capable of denaturation and deposition in cardiac tissue. While the phase 3 ATTR-ACT trial demonstrated the efficacy of tafamidis, the degree to which the approved dose captures the full potential of the mechanism has yet to be assessed. METHODS: We developed a model of dynamic TTR concentrations in plasma to relate TTR occupancy by tafamidis to TTR stabilisation. We then developed population pharmacokinetic-pharmacodynamic models to characterise the relationship between stabilisation and measures of disease progression. RESULTS: Modelling individual patient data of tafamidis exposure and increased plasma TTR confirmed that single-site binding provides complete tetramer stabilisation in vivo. The approved dose was estimated to reduce unbound TTR tetramer by 92%, and was associated with 53%, 56% and 49% decreases in the rate of change in NT-proBNP, KCCQ-OS, and six-minute walk test disease progression measures, respectively. Simulating complete TTR stabilisation predicted slightly greater reductions of 58%, 61% and 54%, respectively. CONCLUSIONS: These findings support the value of TTR stabilisation as a clinically beneficial treatment option in ATTR-CM and the ability of tafamidis to realise nearly the full therapeutic benefit of this mechanism. CLINICALTRIALS.GOV IDENTIFIER: NCT01994889.


Subject(s)
Amyloid Neuropathies, Familial , Cardiomyopathies , Humans , Amyloid Neuropathies, Familial/drug therapy , Amyloid Neuropathies, Familial/genetics , Amyloid Neuropathies, Familial/complications , Prealbumin/genetics , Prealbumin/metabolism , Benzoxazoles/therapeutic use , Cardiomyopathies/metabolism , Disease Progression
3.
Front Immunol ; 10: 609, 2019.
Article in English | MEDLINE | ID: mdl-30984185

ABSTRACT

The NF-κB transcription regulation system governs a diverse set of responses to various cytokine stimuli. With tools from in vitro biochemical characterizations, to omics-based whole genome investigations, great strides have been made in understanding how NF-κB transcription factors control the expression of specific sets of genes. Nonetheless, these efforts have also revealed a very large number of potential binding sites for NF-κB in the human genome, and a puzzle emerges when trying to explain how NF-κB selects from these many binding sites to direct cell-type- and stimulus-specific gene expression patterns. In this review, we surmise that target gene transcription can broadly be thought of as a function of the nuclear abundance of the various NF-κB dimers, the affinity of NF-κB dimers for the regulatory sequence and the availability of this regulatory site. We use this framework to place quantitative information that has been gathered about the NF-κB transcription regulation system into context and thus consider questions it answers, and questions it raises. We end with a brief discussion of some of the future prospects that new approaches could bring to our understanding of how NF-κB transcription factors orchestrate diverse responses in different biological contexts.


Subject(s)
Gene Expression Regulation/immunology , NF-kappa B/immunology , Response Elements/immunology , Transcription, Genetic/immunology , Animals , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...