Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Sci Rep ; 10(1): 8629, 2020 05 25.
Article in English | MEDLINE | ID: mdl-32451443

ABSTRACT

Improved tuberculosis diagnostics and tools for monitoring treatment response are urgently needed. We developed a robust and simple, PCR-based host-blood transcriptomic signature, RISK6, for multiple applications: identifying individuals at risk of incident disease, as a screening test for subclinical or clinical tuberculosis, and for monitoring tuberculosis treatment. RISK6 utility was validated by blind prediction using quantitative real-time (qRT) PCR in seven independent cohorts. Prognostic performance significantly exceeded that of previous signatures discovered in the same cohort. Performance for diagnosing subclinical and clinical disease in HIV-uninfected and HIV-infected persons, assessed by area under the receiver-operating characteristic curve, exceeded 85%. As a screening test for tuberculosis, the sensitivity at 90% specificity met or approached the benchmarks set out in World Health Organization target product profiles for non-sputum-based tests. RISK6 scores correlated with lung immunopathology activity, measured by positron emission tomography, and tracked treatment response, demonstrating utility as treatment response biomarker, while predicting treatment failure prior to treatment initiation. Performance of the test in capillary blood samples collected by finger-prick was noninferior to venous blood collected in PAXgene tubes. These results support incorporation of RISK6 into rapid, capillary blood-based point-of-care PCR devices for prospective assessment in field studies.


Subject(s)
Real-Time Polymerase Chain Reaction/methods , Tuberculosis/diagnosis , Adolescent , Area Under Curve , Biomarkers/metabolism , Cohort Studies , Female , HIV Infections/complications , HIV Infections/pathology , Humans , Lung/diagnostic imaging , Lung/innervation , Lung/pathology , Male , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/isolation & purification , Point-of-Care Systems , Positron-Emission Tomography , Prognosis , RNA, Bacterial/metabolism , ROC Curve , Sensitivity and Specificity , Tuberculosis/complications , Tuberculosis/microbiology
2.
Elife ; 92020 04 17.
Article in English | MEDLINE | ID: mdl-32301705

ABSTRACT

Yeast tolerates a low pH and high solvent concentrations. The permeability of the plasma membrane (PM) for small molecules is low and lateral diffusion of proteins is slow. These findings suggest a high degree of lipid order, which raises the question of how membrane proteins function in such an environment. The yeast PM is segregated into the Micro-Compartment-of-Can1 (MCC) and Pma1 (MCP), which have different lipid compositions. We extracted proteins from these microdomains via stoichiometric capture of lipids and proteins in styrene-maleic-acid-lipid-particles (SMALPs). We purified SMALP-lipid-protein complexes by chromatography and quantitatively analyzed periprotein lipids located within the diameter defined by one SMALP. Phospholipid and sterol concentrations are similar for MCC and MCP, but sphingolipids are enriched in MCP. Ergosterol is depleted from this periprotein lipidome, whereas phosphatidylserine is enriched relative to the bulk of the plasma membrane. Direct detection of PM lipids in the 'periprotein space' supports the conclusion that proteins function in the presence of a locally disordered lipid state.


Subject(s)
Cell Membrane/metabolism , Membrane Lipids/metabolism , Membrane Microdomains/metabolism , Membrane Proteins/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Lipidomics/methods , Phospholipids/metabolism , Saccharomyces cerevisiae/metabolism , Sphingolipids/metabolism , Sterols/metabolism
3.
PLoS Pathog ; 15(2): e1007567, 2019 02.
Article in English | MEDLINE | ID: mdl-30789961

ABSTRACT

Most studies of T lymphocytes focus on recognition of classical major histocompatibility complex (MHC) class I or II molecules presenting oligopeptides, yet there are numerous variations and exceptions of biological significance based on recognition of a wide variety of nonclassical MHC molecules. These include αß and γδ T cells that recognize different class Ib molecules (CD1, MR-1, HLA-E, G, F, et al.) that are nearly monomorphic within a given species. Collectively, these T cells can be considered "unconventional," in part because they recognize lipids, metabolites, and modified peptides. Unlike classical MHC-specific cells, unconventional T cells generally exhibit limited T-cell antigen receptor (TCR) repertoires and often produce innate immune cell-like rapid effector responses. Exploiting this system in new generation vaccines for human immunodeficiency virus (HIV), tuberculosis (TB), other infectious agents, and cancer was the focus of a recent workshop, "Immune Surveillance by Non-classical MHC Molecules: Improving Diversity for Antigens," sponsored by the National Institute of Allergy and Infectious Diseases. Here, we summarize salient points presented regarding the basic immunobiology of unconventional T cells, recent advances in methodologies to measure unconventional T-cell activity in diseases, and approaches to harness their considerable clinical potential.


Subject(s)
Immunologic Surveillance/immunology , Major Histocompatibility Complex/immunology , Animals , Antigens , HLA Antigens , Histocompatibility Antigens Class I/immunology , Histocompatibility Antigens Class II/immunology , Humans , Receptors, Antigen, T-Cell , Receptors, Antigen, T-Cell, alpha-beta/immunology , T-Lymphocytes/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...