Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Parasitology ; : 1-8, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38719483

ABSTRACT

Sculpins (coastrange and slimy) and sticklebacks (ninespine and threespine) are widely distributed fishes cohabiting 2 south-central Alaskan lakes (Aleknagik and Iliamna), and all these species are parasitized by cryptic diphyllobothriidean cestodes in the genus Schistocephalus. The goal of this investigation was to test for host-specific parasitic relationships between sculpins and sticklebacks based upon morphological traits (segment counts) and sequence variation across the NADH1 gene. A total of 446 plerocercoids was examined. Large, significant differences in mean segment counts were found between cestodes in sculpin (mean = 112; standard deviation [s.d.] = 15) and stickleback (mean = 86; s.d. = 9) hosts within and between lakes. Nucleotide sequence divergence between parasites from sculpin and stickleback hosts was 20.5%, and Bayesian phylogenetic analysis recovered 2 well-supported clades of cestodes reflecting intermediate host family (i.e. sculpin, Cottidae vs stickleback, Gasterosteidae). Our findings point to the presence of a distinct lineage of cryptic Schistocephalus in sculpins from Aleknagik and Iliamna lakes that warrants further investigation to determine appropriate evolutionary and taxonomic recognition.

2.
J Exp Biol ; 226(Suppl_1)2023 04 25.
Article in English | MEDLINE | ID: mdl-37021688

ABSTRACT

The functional capacities of animals are a primary factor determining survival in nature. In this context, understanding the biomechanical performance of animals can provide insight into diverse aspects of their biology, ranging from ecological distributions across habitat gradients to the evolutionary diversification of lineages. To survive and reproduce in the face of environmental pressures, animals must perform a wide range of tasks, some of which entail tradeoffs between competing demands. Moreover, the demands encountered by animals can change through ontogeny as they grow, sexually mature or migrate across environmental gradients. To understand how mechanisms that underlie functional performance contribute to survival and diversification across challenging and variable habitats, we have pursued diverse studies of the comparative biomechanics of amphidromous goby fishes across functional requirements ranging from prey capture and fast-start swimming to adhesion and waterfall climbing. The pan-tropical distribution of these fishes has provided opportunities for repeated testing of evolutionary hypotheses. By synthesizing data from the lab and field, across approaches spanning high-speed kinematics, selection trials, suction pressure recordings, mechanical property testing, muscle fiber-type measurements and physical modeling of bioinspired designs, we have clarified how multiple axes of variation in biomechanical performance associate with the ecological and evolutionary diversity of these fishes. Our studies of how these fishes meet both common and extreme functional demands add new, complementary perspectives to frameworks developed from other systems, and illustrate how integrating knowledge of the mechanical underpinnings of diverse aspects of performance can give critical insights into ecological and evolutionary questions.


Subject(s)
Biological Evolution , Fishes , Animals , Biomechanical Phenomena , Fishes/physiology , Swimming , Ecosystem
3.
Ecology ; 103(11): e3800, 2022 11.
Article in English | MEDLINE | ID: mdl-35726198

ABSTRACT

Partial migration strategies, in which some individuals migrate but others do not, are widely observed in populations of migratory animals. Such patterns could arise via variation in migratory behaviors made by individual animals, via genetic variation in migratory predisposition, or simply by variation in migration opportunities mediated by environmental conditions. Here we use spatiotemporal variation in partial migration across populations of an amphidromous Hawaiian goby to test whether stream or ocean conditions favor completing its life cycle entirely within freshwater streams rather than undergoing an oceanic larval migration. Across 35 watersheds, microchemical analysis of otoliths revealed that most adult Awaous stamineus were freshwater residents (62% of n = 316 in 2009, 83% of n = 274 in 2011), but we found considerable variation among watersheds. We then tested the hypothesis that the prevalence of freshwater residency increases with the stability of stream flows and decreases with the availability of dispersal pathways arising from ocean hydrodynamics. We found that streams with low variation of daily discharge were home to a higher incidence of freshwater residents in each survey year. The magnitude of the shift in freshwater residency between survey years was positively associated with predicted interannual variability in the success of larval settlement in streams on each island based on passive drift in ocean currents. We built on these findings by developing a theoretical model of goby life history to further evaluate whether mediation of migration outcomes by stream and ocean hydrodynamics could be sufficient to explain the range of partial migration frequency observed across populations. The model illustrates that the proportion of larvae entering the ocean and differential survival of freshwater-resident versus ocean-going larvae are plausible mechanisms for range-wide shifts in migration strategies. Thus, we propose that hydrologic variation in both ocean and stream environments contributes to spatiotemporal variation in the prevalence of migration phenotypes in A. stamineus. Our empirical and theoretical results suggest that the capacity for partial migration could enhance the persistence of metapopulations of diadromous fish when confronted with variable ocean and stream conditions.


Subject(s)
Perciformes , Rivers , Animals , Hawaii , Hydrodynamics , Fishes , Perciformes/genetics , Larva , Animal Migration
4.
Evol Appl ; 14(7): 1747-1761, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34295361

ABSTRACT

How much does natural selection, as opposed to genetic drift, admixture, and gene flow, contribute to the evolution of invasive species following introduction to a new environment? Here we assess how evolution can shape biological invasions by examining population genomic variation in non-native guppies (Poecilia reticulata) introduced to the Hawaiian Islands approximately a century ago. By examining 18 invasive populations from four Hawaiian islands and four populations from the native range in northern South America, we reconstructed the history of introductions and evaluated population structure as well as the extent of ongoing gene flow across watersheds and among islands. Patterns of differentiation indicate that guppies have developed significant population structure, with little natural or human-mediated gene flow having occurred among populations following introduction. Demographic modeling and admixture graph analyses together suggest that guppies were initially introduced to O'ahu and Maui and then translocated to Hawai'i and Kaua'i. We detected evidence for only one introduction event from the native range, implying that any adaptive evolution in introduced populations likely utilized the genetic variation present in the founding population. Environmental association tests accounting for population structure identified loci exhibiting signatures of adaptive variation related to predators and landscape characteristics but not nutrient regimes. When paired with high estimates of effective population sizes and detectable population structure, the presence of environment-associated loci supports the role of natural selection in shaping contemporary evolution of Hawaiian guppy populations. Our findings indicate that local adaptation may engender invasion success, particularly in species with life histories that facilitate rapid evolution. Finally, evidence of low gene flow between populations suggests that removal could be an effective approach to control invasive guppies across the Hawaiian archipelago.

5.
J Fish Biol ; 96(2): 456-468, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31814124

ABSTRACT

We assessed the prevalence of life history variation across four of the five native amphidromous Hawai'ian gobioids to determine whether some or all exhibit evidence of partial migration. Analysis of otolith Sr.: Ca concentrations affirmed that all are amphidromous and revealed evidence of partial migration in three of the four species. We found that 25% of Lentipes concolor (n = 8), 40% of Eleotris sandwicensis (n = 20) and 29% of Stenogobius hawaiiensis (n = 24) did not exhibit a migratory life-history. In contrast, all individuals of Sicyopterus stimpsoni (n = 55) included in the study went to sea as larvae. Lentipes concolor exhibited the shortest mean larval duration (LD) at 87 days, successively followed by E. sandwicensis (mean LD = 102 days), S. hawaiiensis (mean LD = 114 days) and S. stimpsoni (mean LD = 120 days). These findings offer a fresh perspective on migratory life histories that can help improve efforts to conserve and protect all of these and other at-risk amphidromous species that are subject to escalating anthropogenic pressures in both freshwater and marine environments.


Subject(s)
Animal Migration/physiology , Fishes/physiology , Otolithic Membrane/physiology , Animals , Fresh Water , Hawaii , Larva , Seawater
6.
BMC Evol Biol ; 19(1): 88, 2019 04 11.
Article in English | MEDLINE | ID: mdl-30975077

ABSTRACT

BACKGROUND: Local adaptation of marine and diadromous species is thought to be a product of larval dispersal, settlement mortality, and differential reproductive success, particularly in heterogeneous post-settlement habitats. We evaluated this premise with an oceanographic passive larval dispersal model coupled with individual-based models of post-settlement selection and reproduction to infer conditions that underlie local adaptation in Sicyopterus stimpsoni, an amphidromous Hawaiian goby known for its ability to climb waterfalls. RESULTS: Our model results demonstrated that larval dispersal is spatio-temporally asymmetric, with more larvae dispersed from the southeast (the Big Island) to northwest (Kaua'i) along the archipelago, reflecting prevailing conditions such as El Niño/La Niña oscillations. Yet connectivity is nonetheless sufficient to result in homogenous populations across the archipelago. We also found, however, that ontogenetic shifts in habitat can give rise to adaptive morphological divergence when the strength of predation-driven post-settlement selection crosses a critical threshold. Notably, our simulations showed that larval dispersal is not the only factor determining the likelihood of morphological divergence. We found adaptive potential and evolutionary trajectories of S. stimpsoni were greater on islands with stronger environmental gradients and greater variance in larval cohort morphology due to fluctuating immigration. CONCLUSIONS: Contrary to expectation, these findings indicate that immigration can act in concert with selection to favor local adaptation and divergence in species with marine larval dispersal. Further development of model simulations, parameterized to reflect additional empirical estimates of abiotic and biotic factors, will help advance our understanding of the proximate and ultimate mechanisms driving adaptive evolution, population resilience, and speciation in marine-associated species.


Subject(s)
Adaptation, Physiological , Biophysical Phenomena , Models, Biological , Perciformes/physiology , Selection, Genetic , Animal Distribution , Animals , Computer Simulation , Hawaii , Islands , Larva/physiology , Linear Models , Oceanography , Perciformes/anatomy & histology
7.
Parasitology ; 146(7): 883-896, 2019 06.
Article in English | MEDLINE | ID: mdl-30720409

ABSTRACT

Remarkably few attempts have been made to estimate contemporary effective population size (Ne) for parasitic species, despite the valuable perspectives it can offer on the tempo and pace of parasite evolution as well as coevolutionary dynamics of host-parasite interactions. In this study, we utilized multi-locus microsatellite data to derive single-sample and temporal estimates of contemporary Ne for a cestode parasite (Schistocephalus solidus) as well as three-spined stickleback hosts (Gasterosteus aculeatus) in lakes across Alaska. Consistent with prior studies, both approaches recovered small and highly variable estimates of parasite and host Ne. We also found that estimates of host Ne and parasite Ne were sensitive to assumptions about population genetic structure and connectivity. And, while prior work on the stickleback-cestode system indicates that physiographic factors external to stickleback hosts largely govern genetic variation in S. solidus, our findings indicate that stickleback host attributes and factors internal to the host - namely body length, genetic diversity and infection - shape contemporary Ne of cestode parasites.


Subject(s)
Cestoda/genetics , Cestode Infections/veterinary , Fish Diseases/parasitology , Smegmamorpha/genetics , Smegmamorpha/parasitology , Alaska , Animals , Cestoda/pathogenicity , Cestode Infections/parasitology , Genetic Variation , Genetics, Population , Lakes , Microsatellite Repeats/genetics , Population Density , Virulence
8.
Parasitology ; 146(1): 97-104, 2019 01.
Article in English | MEDLINE | ID: mdl-29921332

ABSTRACT

We performed a long-term natural experiment investigating the impact of the diphyllobotriidean cestode Schistocephalus solidus on the body condition and clutch size (CS) of threespine stickleback Gasterosteus aculeatus, its second intermediate host, and the growth of larval parasites in host fish. We tested the hypothesis that single S. solidus infections were more virulent than multiple infections. We also asked whether the metrics of mean and total parasite mass (proxies for individual and total volume, respectively) were consistent with predictions of the resource constraints or the life history strategy (LHS) hypothesis for the growth of, hence exploitation by, larval helminths in intermediate hosts. The samples were drawn from Walby Lake, Alaska in eight of 11 years. Host body condition and CS (egg number per spawning bout) decreased significantly with intensity after adjustments for host size and parasite index. Thus, infections have an increasingly negative impact on measures of host fitness with greater intensity, in contrast to the hypothesis that single infections are more harmful than multiple infections. We also found that mean parasite mass decreased with intensity while total parasite mass increased with intensity as predicted by the LHS hypothesis.


Subject(s)
Cestoda/pathogenicity , Cestode Infections/veterinary , Fish Diseases/parasitology , Smegmamorpha/parasitology , Animals , Body Size , Cestoda/growth & development , Cestode Infections/epidemiology , Cestode Infections/parasitology , Clutch Size , Female , Fish Diseases/epidemiology , Linear Models , Prevalence , Reproduction , Virulence
9.
PLoS One ; 8(12): e84851, 2013.
Article in English | MEDLINE | ID: mdl-24386424

ABSTRACT

Selective pressures generated by locomotor challenges act at the level of the individual. However, phenotypic variation among individuals that might convey a selective advantage may occur across any of multiple levels of biological organization. In this study, we test for differences in external morphology, muscle mechanical advantage, muscle fiber type and protein expression among individuals of the waterfall climbing Hawaiian fish Sicyopterus stimpsoni collected from sequential pools increasing in elevation within a single freshwater stream. Despite predictions from previous laboratory studies of morphological selection, few directional morphometric changes in body shape were observed at successively higher elevations. Similarly, lever arm ratios associated with the main pelvic sucker, central to climbing ability in this species, did not differ between elevations. However, among climbing muscles, the adductor pelvicus complex (largely responsible for generating pelvic suction during climbing) contained a significantly greater red muscle fiber content at upstream sites. A proteomic analysis of the adductor pelvicus revealed two-fold increases in expression levels for two respiratory chain proteins (NADH:ubiquinone reductase and cytochrome b) that are essential for aerobic respiration among individuals from successively higher elevations. Assessed collectively, these evaluations reveal phenotypic differences at some, but not all levels of biological organization that are likely the result of selective pressures experienced during climbing.


Subject(s)
Fishes/metabolism , Locomotion/physiology , Muscle Fibers, Skeletal/metabolism , Muscle Proteins/metabolism , Animals , Electron Transport/physiology , Fresh Water , Proteomics
10.
Integr Comp Biol ; 50(6): 1185-99, 2010 Dec.
Article in English | MEDLINE | ID: mdl-21558266

ABSTRACT

Environmental pressures may vary over the geographic range of a species, exposing subpopulations to divergent functional demands. How does exposure to competing demands shape the morphology of species and influence the divergence of populations? We explored these questions by performing selection experiments on juveniles of the Hawaiian goby Sicyopterus stimpsoni, an amphidromous fish that exhibits morphological differences across portions of its geographic range where different environmental pressures predominate. Juvenile S. stimpsoni face two primary and potentially opposing selective pressures on body shape as they return from the ocean to freshwater streams on islands: (1) avoiding predators in the lower reaches of a stream; and (2) climbing waterfalls to reach the habitats occupied by adults. These pressures differ in importance across the Hawaiian Islands. On the youngest island, Hawai'i, waterfalls are close to shore, thereby minimizing exposure to predators and placing a premium on climbing performance. In contrast, on the oldest major island, Kaua'i, waterfalls have eroded further inland, lengthening the exposure of juveniles to predators before migrating juveniles begin climbing. Both juvenile and adult fish show differences in body shape between these islands that would be predicted to improve evasion of predators by fish from Kaua'i (e.g., taller bodies that improve thrust) and climbing performance for fish from Hawai'i (e.g., narrower bodies that reduce drag), matching the prevailing environmental demand on each island. To evaluate how competing selection pressures and functional tradeoffs contribute to the divergence in body shape observed in S. stimpsoni, we compared selection imposed on juvenile body shape by (1) predation by the native fish Eleotris sandwicensis versus (2) climbing an artificial waterfall (∼100 body lengths). Some variables showed opposing patterns of selection that matched predictions: for example, survivors of predation had lower fineness ratios than did control fish (i.e., greater body depth for a given length), whereas successful climbers had higher fineness ratios (reducing drag) than did fish that failed. However, most morphological variables showed significant selection in only one treatment rather than opposing selection across both. Thus, functional tradeoffs between evasion of predators and minimizing drag during climbing might influence divergence in body shape across subpopulations, but even when selection is an important contributing mechanism, directly opposite patterns of selection across environmental demands are not required to generate morphological divergence.


Subject(s)
Body Size , Locomotion , Perciformes/anatomy & histology , Perciformes/genetics , Selection, Genetic , Animals , Ecosystem , Food Chain , Hawaii , Rivers , Species Specificity , Water Movements
SELECTION OF CITATIONS
SEARCH DETAIL
...