Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
2.
Sci Rep ; 13(1): 2412, 2023 Feb 10.
Article in English | MEDLINE | ID: mdl-36765084

ABSTRACT

Protection of free-electron sources has been technically challenging due to lack of materials that transmit electrons while preventing corrosive gas molecules. Two-dimensional materials uniquely possess both of required properties. Here, we report three orders of magnitude increase in active pressure and factor of two enhancement in the lifetime of high quantum efficiency (QE) bialkali photocathodes (cesium potassium antimonide (CsK2Sb)) by encapsulating them in graphene and thin nickel (Ni) film. The photoelectrons were extracted through the graphene protection layer in a reflection mode, and we achieved QE of ~ 0.17% at ~ 3.4 eV, 1/e lifetime of 188 h with average current of 8.6 nA under continuous illumination, and no decrease of QE at the pressure of as high as ~ 1 × 10-3 Pa. In comparison, the QE decreased drastically at 10-6 Pa for bare, non-protected CsK2Sb photocathodes and their 1/e lifetime under continuous illumination was ~ 48 h. We attributed the improvements to the gas impermeability and photoelectron transparency of graphene.

3.
ACS Appl Mater Interfaces ; 14(1): 1710-1717, 2022 Jan 12.
Article in English | MEDLINE | ID: mdl-34935342

ABSTRACT

Photocathodes are essential components for various applications requiring photon-to-free-electron conversion, for example, high-sensitivity photodetectors and electron injectors for free-electron lasers. Alkali antimonide thin films are widely used as photocathode materials owing to their high quantum efficiency (QE) in the visible spectral range; however, their lifetime can be limited even in ultrahigh vacuum due to their high reactivity to residual gases and sensitivity to ion back-bombardment in these applications. An ambitious technical challenge is to extend the lifetime of bialkali photocathodes by coating them with suitable materials that can isolate the photocathode films from residual gases while still maintaining their highly emissive properties. We propose the use of graphene, an atomically thin two-dimensional material with gas impermeability, as a promising candidate for this purpose. Here, we report that high-quality bialkali antimonide can be grown on a two-layer (2L) suspended graphene substrate with a peak QE of 15%. More importantly, by comparing the photoemission through varying layers of graphene, we demonstrate that photoelectrons can transmit through few-layer graphene with a maximum QE of over 0.7% at 4.5 eV for 2L graphene, corresponding to a transmission efficiency of 5%. These results demonstrate important progress toward fully encapsulated bialkali photocathodes having both high QEs and long lifetimes using atomically thin protection layers.

4.
Nat Commun ; 12(1): 673, 2021 Jan 29.
Article in English | MEDLINE | ID: mdl-33514723

ABSTRACT

Electron sources are a critical component in a wide range of applications such as electron-beam accelerator facilities, photomultipliers, and image intensifiers for night vision. We report efficient, regenerative and low-cost electron sources based on solution-processed halide perovskites thin films when they are excited with light with energy equal to or above their bandgap. We measure a quantum efficiency up to 2.2% and a lifetime of more than 25 h. Importantly, even after degradation, the electron emission can be completely regenerated to its maximum efficiency by deposition of a monolayer of Cs. The electron emission from halide perovskites can be tuned over the visible and ultraviolet spectrum, and operates at vacuum levels with pressures at least two-orders higher than in state-of-the-art semiconductor electron sources.

5.
Rev Sci Instrum ; 91(3): 033302, 2020 Mar 01.
Article in English | MEDLINE | ID: mdl-32260010

ABSTRACT

Space plasma instruments often rely on ultrathin carbon foils for incident ion detection, time-of-flight (TOF) mass spectrometry, and ionization of energetic neutral atoms. Angular scattering and energy loss of ions or neutral atoms in the foil can degrade instrument performance, including sensitivity and mass resolution; thus, there is an ongoing effort to manufacture thinner foils. Using new 3-layer graphene foils manufactured at the Los Alamos National Laboratory, we demonstrate that these are the thinnest foils reported to date and discuss future testing required for application in space instrumentation. We characterize the angular scattering distribution for 3-30 keV protons through the foils, which is used as a proxy for the foil thickness. We show that these foils are ∼2.5-4.5 times thinner than the state-of-the-art carbon foils and ∼1.6 times thinner than other graphene foils described in the literature. We find that the inverse relationship between angular scattering and energy no longer holds, reaffirming that this may indicate a new domain of beam-foil interactions for ultrathin (few-layer) graphene foils.

6.
Nano Lett ; 17(4): 2319-2327, 2017 04 12.
Article in English | MEDLINE | ID: mdl-28253617

ABSTRACT

Typical use of colloidal quantum dots (QDs) as bright, tunable phosphors in real applications relies on engineering of their surfaces to suppress the loss of excited carriers to surface trap states or to the surrounding medium. Here, we explore the utility of QDs in an application that actually exploits their propensity toward photoionization, namely within efficient and robust photocathodes for use in next-generation electron guns. In order to establish the relevance of QD films as photocathodes, we evaluate the efficiency of electron photoemission of films of a variety of compositions in a typical electron gun configuration. By quantifying photocurrent as a function of excitation photon energy, excitation intensity and pulse duration, we establish the role of hot electrons in photoemission within the multiphoton excitation regime. We also demonstrate the effect of QD structure and film deposition methods on efficiency, which suggests numerous pathways for further enhancements. Finally, we show that QD photocathodes offer superior efficiencies relative to standard copper cathodes and are robust against degradation under ambient conditions.

SELECTION OF CITATIONS
SEARCH DETAIL
...