Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
1.
Sci Adv ; 9(47): eadg8876, 2023 11 24.
Article in English | MEDLINE | ID: mdl-38000020

ABSTRACT

Malignant peripheral nerve sheath tumors (MPNSTs) are highly aggressive soft tissue sarcomas with limited treatment options, and new effective therapeutic strategies are desperately needed. We observe antiproliferative potency of genetic depletion of PTPN11 or pharmacological inhibition using the SHP2 inhibitor (SHP2i) TNO155. Our studies into the signaling response to SHP2i reveal that resistance to TNO155 is partially mediated by reduced RB function, and we therefore test the addition of a CDK4/6 inhibitor (CDK4/6i) to enhance RB activity and improve TNO155 efficacy. In combination, TNO155 attenuates the adaptive response to CDK4/6i, potentiates its antiproliferative effects, and converges on enhancement of RB activity, with greater suppression of cell cycle and inhibitor-of-apoptosis proteins, leading to deeper and more durable antitumor activity in in vitro and in vivo patient-derived models of MPNST, relative to either single agent. Overall, our study provides timely evidence to support the clinical advancement of this combination strategy in patients with MPNST and other tumors driven by loss of NF1.


Subject(s)
Neurofibrosarcoma , Humans , Signal Transduction , Cell Cycle , Cell Line, Tumor , Cyclin-Dependent Kinase 4/genetics
2.
bioRxiv ; 2023 Feb 03.
Article in English | MEDLINE | ID: mdl-36778419

ABSTRACT

Malignant peripheral nerve sheath tumors (MPNST) are highly aggressive soft tissue sarcomas with limited treatment options, and novel effective therapeutic strategies are desperately needed. We observe anti-proliferative efficacy of genetic depletion or pharmacological inhibition using the clinically available SHP2 inhibitor (SHP2i) TNO155. Our studies into the signaling response to SHP2i reveal that resistance to TNO155 is partially mediated by reduced RB function, and we therefore test the addition of a CDK4/6 inhibitor (CDK4/6i) to enhance RB activity and improve TNO155 efficacy. In combination, TNO155 attenuates the adaptive response to CDK4/6i, potentiates its anti-proliferative effects, and converges on enhancement of RB activity, with greater suppression of cell cycle and inhibitor-of-apoptosis proteins, leading to deeper and more durable anti-tumor activity in in vitro and in vivo patient-derived models of MPNST, relative to either single agent. Overall, our study provides timely evidence to support the clinical advancement of this combination strategy in patients with MPNST and other tumors driven by loss of NF1.

3.
Breast Cancer Res ; 23(1): 63, 2021 06 04.
Article in English | MEDLINE | ID: mdl-34088357

ABSTRACT

BACKGROUND: Breast cancer mortality is principally due to tumor recurrence, which can occur following extended periods of clinical remission that may last decades. While clinical latency has been postulated to reflect the ability of residual tumor cells to persist in a dormant state, this hypothesis remains unproven since little is known about the biology of these cells. Consequently, defining the properties of residual tumor cells is an essential goal with important clinical implications for preventing recurrence and improving cancer outcomes. METHODS: To identify conserved features of residual tumor cells, we modeled minimal residual disease using inducible transgenic mouse models for HER2/neu and Wnt1-driven tumorigenesis that recapitulate cardinal features of human breast cancer progression, as well as human breast cancer cell xenografts subjected to targeted therapy. Fluorescence-activated cell sorting was used to isolate tumor cells from primary tumors, residual lesions following oncogene blockade, and recurrent tumors to analyze gene expression signatures and evaluate tumor-initiating cell properties. RESULTS: We demonstrate that residual tumor cells surviving oncogenic pathway inhibition at both local and distant sites exist in a state of cellular dormancy, despite adequate vascularization and the absence of adaptive immunity, and retain the ability to re-enter the cell cycle and give rise to recurrent tumors after extended latency periods. Compared to primary or recurrent tumor cells, dormant residual tumor cells possess unique features that are conserved across mouse models for human breast cancer driven by different oncogenes, and express a gene signature that is strongly associated with recurrence-free survival in breast cancer patients and similar to that of tumor cells in which dormancy is induced by the microenvironment. Although residual tumor cells in both the HER2/neu and Wnt1 models are enriched for phenotypic features associated with tumor-initiating cells, limiting dilution experiments revealed that residual tumor cells are not enriched for cells capable of giving rise to primary tumors, but are enriched for cells capable of giving rise to recurrent tumors, suggesting that tumor-initiating populations underlying primary tumorigenesis may be distinct from those that give rise to recurrence following therapy. CONCLUSIONS: Residual cancer cells surviving targeted therapy reside in a well-vascularized, desmoplastic microenvironment at both local and distant sites. These cells exist in a state of cellular dormancy that bears little resemblance to primary or recurrent tumor cells, but shares similarities with cells in which dormancy is induced by microenvironmental cues. Our observations suggest that dormancy may be a conserved response to targeted therapy independent of the oncogenic pathway inhibited or properties of the primary tumor, that the mechanisms underlying dormancy at local and distant sites may be related, and that the dormant state represents a potential therapeutic target for preventing cancer recurrence.


Subject(s)
Molecular Targeted Therapy , Neoplasm, Residual/pathology , Animals , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Disease-Free Survival , Epithelial-Mesenchymal Transition/genetics , Female , Humans , Mice , Mice, Transgenic , Molecular Targeted Therapy/adverse effects , Neoplasm Metastasis , Neoplasm Recurrence, Local , Neoplasm, Residual/blood supply , Neoplasm, Residual/etiology , Neoplasm, Residual/genetics , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Neovascularization, Pathologic/pathology , Receptor, ErbB-2/antagonists & inhibitors , Receptor, ErbB-2/genetics , Wnt1 Protein/antagonists & inhibitors , Wnt1 Protein/genetics
4.
Br J Cancer ; 125(1): 28-37, 2021 07.
Article in English | MEDLINE | ID: mdl-33941878

ABSTRACT

BACKGROUND: This Phase 1 study assessed the safety and efficacy of the Porcupine inhibitor, WNT974, in patients with advanced solid tumours. METHODS: Patients (n = 94) received oral WNT974 at doses of 5-30 mg once-daily, plus additional dosing schedules. RESULTS: The maximum tolerated dose was not established; the recommended dose for expansion was 10 mg once-daily. Dysgeusia was the most common adverse event (50% of patients), likely resulting from on-target Wnt pathway inhibition. No responses were seen by Response Evaluation Criteria in Solid Tumors (RECIST) v1.1; 16% of patients had stable disease (median duration 19.9 weeks). AXIN2 expression by RT-PCR was reduced in 94% of paired skin biopsies (n = 52) and 74% of paired tumour biopsies (n = 35), confirming inhibition of the Wnt pathway. In an exploratory analysis, an inverse association was observed between AXIN2 change and immune signature change in paired tumour samples (n = 8). CONCLUSIONS: Single-agent WNT974 treatment was generally well tolerated. Biomarker analyses suggest that WNT974 may influence immune cell recruitment to tumours, and may enhance checkpoint inhibitor activity. CLINICAL TRIAL REGISTRATION: NCT01351103.


Subject(s)
Axin Protein/genetics , Enzyme Inhibitors/administration & dosage , Neoplasms/drug therapy , Pyrazines/administration & dosage , Pyridines/administration & dosage , Administration, Oral , Adult , Aged , Enzyme Inhibitors/pharmacokinetics , Female , Gene Expression Regulation, Neoplastic/drug effects , Humans , Male , Middle Aged , Neoplasms/genetics , Pyrazines/pharmacokinetics , Pyridines/pharmacokinetics , Treatment Outcome , Wnt Signaling Pathway/drug effects
5.
Clin Cancer Res ; 27(1): 342-354, 2021 01 01.
Article in English | MEDLINE | ID: mdl-33046519

ABSTRACT

PURPOSE: SHP2 inhibitors offer an appealing and novel approach to inhibit receptor tyrosine kinase (RTK) signaling, which is the oncogenic driver in many tumors or is frequently feedback activated in response to targeted therapies including RTK inhibitors and MAPK inhibitors. We seek to evaluate the efficacy and synergistic mechanisms of combinations with a novel SHP2 inhibitor, TNO155, to inform their clinical development. EXPERIMENTAL DESIGN: The combinations of TNO155 with EGFR inhibitors (EGFRi), BRAFi, KRASG12Ci, CDK4/6i, and anti-programmed cell death-1 (PD-1) antibody were tested in appropriate cancer models in vitro and in vivo, and their effects on downstream signaling were examined. RESULTS: In EGFR-mutant lung cancer models, combination benefit of TNO155 and the EGFRi nazartinib was observed, coincident with sustained ERK inhibition. In BRAFV600E colorectal cancer models, TNO155 synergized with BRAF plus MEK inhibitors by blocking ERK feedback activation by different RTKs. In KRASG12C cancer cells, TNO155 effectively blocked the feedback activation of wild-type KRAS or other RAS isoforms induced by KRASG12Ci and greatly enhanced efficacy. In addition, TNO155 and the CDK4/6 inhibitor ribociclib showed combination benefit in a large panel of lung and colorectal cancer patient-derived xenografts, including those with KRAS mutations. Finally, TNO155 effectively inhibited RAS activation by colony-stimulating factor 1 receptor, which is critical for the maturation of immunosuppressive tumor-associated macrophages, and showed combination activity with anti-PD-1 antibody. CONCLUSIONS: Our findings suggest TNO155 is an effective agent for blocking both tumor-promoting and immune-suppressive RTK signaling in RTK- and MAPK-driven cancers and their tumor microenvironment. Our data provide the rationale for evaluating these combinations clinically.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Immune Checkpoint Inhibitors/pharmacology , Neoplasms/drug therapy , Protein Kinase Inhibitors/pharmacology , Protein Tyrosine Phosphatase, Non-Receptor Type 11/antagonists & inhibitors , Allosteric Regulation/drug effects , Animals , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Cell Line, Tumor , Cyclin-Dependent Kinase 4/antagonists & inhibitors , Cyclin-Dependent Kinase 6/antagonists & inhibitors , Drug Synergism , ErbB Receptors/antagonists & inhibitors , Female , Humans , Immune Checkpoint Inhibitors/therapeutic use , Mice , Mutation , Neoplasms/genetics , Neoplasms/immunology , Neoplasms/pathology , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Protein Kinase Inhibitors/therapeutic use , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins p21(ras)/antagonists & inhibitors , Proto-Oncogene Proteins p21(ras)/genetics , Tumor-Associated Macrophages/drug effects , Tumor-Associated Macrophages/immunology , Xenograft Model Antitumor Assays
6.
Lancet Respir Med ; 8(6): 561-572, 2020 06.
Article in English | MEDLINE | ID: mdl-31954624

ABSTRACT

BACKGROUND: Resistance to first-generation and second-generation epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) is mediated by the emergence of the Thr790Met mutation in 50-60% of treated patients with non-small-cell lung cancer (NSCLC). We aimed to assess the safety and activity of nazartinib (EGF816), a third-generation EGFR TKI that selectively inhibits EGFR with Thr790Met or activating mutations (or both), while sparing wild-type EGFR, in patients with advanced EGFR-mutant NSCLC. METHODS: This phase 1 dose-escalation part of an open-label, multicentre, phase 1/2 study was conducted at nine academic medical centres located in Europe, Asia, and North America. Patients were included if they were aged 18 years or older and had stage IIIB-IV EGFR-mutant NSCLC (with varying statuses of EGFR mutation and previous therapy allowed), at least one measurable lesion, and an Eastern Cooperative Oncology Group (ECOG) performance status of 2 or less. Nazartinib (at seven dose levels between 75 mg and 350 mg, in capsule or tablet form) was administered orally, once daily, on a continuous 28-day dosing schedule. A two-parameter Bayesian logistic regression model, guided by the escalation with overdose control principle, was implemented to make dose recommendations and estimate the maximum tolerated dose or recommended phase 2 dose of nazartinib (the primary outcome). This study is registered with ClinicalTrials.gov (NCT02108964); enrolment to phase 1 is complete and the study is ongoing. FINDINGS: By Aug 31, 2017, 180 patients (116 [64%] women; median age 60 years (52-69); 116 [64%] with ECOG performance status 1) received nazartinib across seven dose levels: 75 mg (n=17), 100 mg (n=38), 150 mg (n=73), 200 mg (n=8), 225 mg (n=28), 300 mg (n=5), and 350 mg (n=11). Seven dose-limiting toxicities were observed in six (3%) patients who received 150 mg, 225 mg, or 350 mg nazartinib once daily. Although the maximum tolerated dose was not met, the recommended phase 2 dose was declared as 150 mg once daily (tablet). The most common adverse events, regardless of cause, were rash (all subcategories 111 [62%] patients, maculopapular rash 72 [40%], dermatitis acneiform 22 [12%]), diarrhoea (81 [45%]), pruritus (70 [39%]), fatigue (54 [30%]), and stomatitis (54 [30%]), and were mostly grades 1-2. Any-cause grade 3-4 adverse events were reported in 99 (55%) patients across all doses, the most common being rash (all subcategories grouped 27 [15%]), pneumonia (12 [7%]), anaemia (ten [6%]), and dyspnoea (nine [5%]). Serious adverse events suspected to be drug-related occurred in 16 (9%) patients. INTERPRETATION: Nazartinib has a favourable safety profile, with low-grade skin toxicity characterised by a predominantly maculopapular rash that required minimal dose reductions. FUNDING: Novartis Pharmaceuticals Corporation.


Subject(s)
Antineoplastic Agents/therapeutic use , Benzimidazoles/therapeutic use , Carcinoma, Non-Small-Cell Lung/drug therapy , Lung Neoplasms/drug therapy , Nicotine/analogs & derivatives , Aged , Antineoplastic Agents/adverse effects , Benzimidazoles/adverse effects , Carcinoma, Non-Small-Cell Lung/genetics , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/genetics , Female , Humans , Lung Neoplasms/genetics , Male , Middle Aged , Nicotine/adverse effects , Nicotine/therapeutic use , Treatment Outcome
7.
Mol Cancer Ther ; 18(12): 2368-2380, 2019 12.
Article in English | MEDLINE | ID: mdl-31439712

ABSTRACT

KRAS, an oncogene mutated in nearly one third of human cancers, remains a pharmacologic challenge for direct inhibition except for recent advances in selective inhibitors targeting the G12C variant. Here, we report that selective inhibition of the protein tyrosine phosphatase, SHP2, can impair the proliferation of KRAS-mutant cancer cells in vitro and in vivo using cell line xenografts and primary human tumors. In vitro, sensitivity of KRAS-mutant cells toward the allosteric SHP2 inhibitor, SHP099, is not apparent when cells are grown on plastic in 2D monolayer, but is revealed when cells are grown as 3D multicellular spheroids. This antitumor activity is also observed in vivo in mouse models. Interrogation of the MAPK pathway in SHP099-treated KRAS-mutant cancer models demonstrated similar modulation of p-ERK and DUSP6 transcripts in 2D, 3D, and in vivo, suggesting a MAPK pathway-dependent mechanism and possible non-MAPK pathway-dependent mechanisms in tumor cells or tumor microenvironment for the in vivo efficacy. For the KRASG12C MIAPaCa-2 model, we demonstrate that the efficacy is cancer cell intrinsic as there is minimal antiangiogenic activity by SHP099, and the effects of SHP099 is recapitulated by genetic depletion of SHP2 in cancer cells. Furthermore, we demonstrate that SHP099 efficacy in KRAS-mutant models can be recapitulated with RTK inhibitors, suggesting RTK activity is responsible for the SHP2 activation. Taken together, these data reveal that many KRAS-mutant cancers depend on upstream signaling from RTK and SHP2, and provide a new therapeutic framework for treating KRAS-mutant cancers with SHP2 inhibitors.


Subject(s)
Neoplasms/drug therapy , Neoplasms/genetics , Protein Tyrosine Phosphatase, Non-Receptor Type 11/antagonists & inhibitors , Proto-Oncogene Proteins p21(ras)/genetics , Tachykinins/antagonists & inhibitors , Animals , Cell Line, Tumor , Disease Models, Animal , Female , Humans , Mice , Neoplasms/pathology , Signal Transduction , Xenograft Model Antitumor Assays
8.
Mol Cancer Ther ; 18(7): 1323-1334, 2019 07.
Article in English | MEDLINE | ID: mdl-31068384

ABSTRACT

FGFR1 was recently shown to be activated as part of a compensatory response to prolonged treatment with the MEK inhibitor trametinib in several KRAS-mutant lung and pancreatic cancer cell lines. We hypothesize that other receptor tyrosine kinases (RTK) are also feedback-activated in this context. Herein, we profile a large panel of KRAS-mutant cancer cell lines for the contribution of RTKs to the feedback activation of phospho-MEK following MEK inhibition, using an SHP2 inhibitor (SHP099) that blocks RAS activation mediated by multiple RTKs. We find that RTK-driven feedback activation widely exists in KRAS-mutant cancer cells, to a less extent in those harboring the G13D variant, and involves several RTKs, including EGFR, FGFR, and MET. We further demonstrate that this pathway feedback activation is mediated through mutant KRAS, at least for the G12C, G12D, and G12V variants, and wild-type KRAS can also contribute significantly to the feedback activation. Finally, SHP099 and MEK inhibitors exhibit combination benefits inhibiting KRAS-mutant cancer cell proliferation in vitro and in vivo These findings provide a rationale for exploration of combining SHP2 and MAPK pathway inhibitors for treating KRAS-mutant cancers in the clinic.


Subject(s)
Acrylonitrile/analogs & derivatives , Aniline Compounds/therapeutic use , Neoplasms/genetics , Protein Tyrosine Phosphatase, Non-Receptor Type 11/genetics , Proto-Oncogene Proteins p21(ras)/genetics , Acrylonitrile/pharmacology , Acrylonitrile/therapeutic use , Aniline Compounds/pharmacology , Animals , Cell Line, Tumor , Female , Humans , Mice , Mice, Nude , Neoplasms/metabolism , Transfection , Xenograft Model Antitumor Assays
9.
JCO Precis Oncol ; 20182018.
Article in English | MEDLINE | ID: mdl-30123863

ABSTRACT

PURPOSE: Third-generation epidermal growth factor receptor (EGFR) inhibitors like nazartinib are active against EGFR mutation-positive lung cancers with T790M-mediated acquired resistance to initial anti-EGFR treatment, but some patients have mixed responses. METHODS: Multiple serial tumor and liquid biopsies were obtained from two patients before, during, and after treatment with nazartinib. Next-generation sequencing and droplet digital polymerase chain reaction were performed to assess heterogeneity and clonal dynamics. RESULTS: We observed the simultaneous emergence of T790M-dependent and -independent clones in both patients. Serial plasma droplet digital polymerase chain reaction illustrated shifts in relative clonal abundance in response to various systemic therapies, confirming a molecular basis for the clinical mixed radiographic responses observed. CONCLUSION: Heterogeneous responses to treatment targeting a solitary resistance mechanism can be explained by coexistent tumor subclones harboring distinct genetic signatures. Serial liquid biopsies offer an opportunity to monitor clonal dynamics and the emergence of resistance and may represent a useful tool to guide therapeutic strategies.

10.
Nat Med ; 24(4): 512-517, 2018 05.
Article in English | MEDLINE | ID: mdl-29505033

ABSTRACT

Most anaplastic lymphoma kinase (ALK)-rearranged non-small-cell lung tumors initially respond to small-molecule ALK inhibitors, but drug resistance often develops. Of tumors that develop resistance to highly potent second-generation ALK inhibitors, approximately half harbor resistance mutations in ALK, while the other half have other mechanisms underlying resistance. Members of the latter group often have activation of at least one of several different tyrosine kinases driving resistance. Such tumors are not expected to respond to lorlatinib-a third-generation inhibitor targeting ALK that is able to overcome all clinically identified resistant mutations in ALK-and further therapeutic options are limited. Herein, we deployed a shRNA screen of 1,000 genes in multiple ALK-inhibitor-resistant patient-derived cells (PDCs) to discover those that confer sensitivity to ALK inhibition. This approach identified SHP2, a nonreceptor protein tyrosine phosphatase, as a common targetable resistance node in multiple PDCs. SHP2 provides a parallel survival input downstream of multiple tyrosine kinases that promote resistance to ALK inhibitors. Treatment with SHP099, the recently discovered small-molecule inhibitor of SHP2, in combination with the ALK tyrosine kinase inhibitor (TKI) ceritinib halted the growth of resistant PDCs through preventing compensatory RAS and ERK1 and ERK2 (ERK1/2) reactivation. These findings suggest that combined ALK and SHP2 inhibition may be a promising therapeutic strategy for resistant cancers driven by several different ALK-independent mechanisms underlying resistance.


Subject(s)
Anaplastic Lymphoma Kinase/antagonists & inhibitors , Carcinoma, Non-Small-Cell Lung/enzymology , Drug Resistance, Neoplasm/drug effects , Gene Rearrangement/genetics , Lung Neoplasms/enzymology , Protein Kinase Inhibitors/pharmacology , Protein Tyrosine Phosphatase, Non-Receptor Type 11/antagonists & inhibitors , Anaplastic Lymphoma Kinase/metabolism , Animals , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line, Tumor , Extracellular Signal-Regulated MAP Kinases/metabolism , Female , Humans , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Mice, Nude , Protein Tyrosine Phosphatase, Non-Receptor Type 11/metabolism , Pyrimidines/pharmacology , Pyrimidines/therapeutic use , RNA, Small Interfering/metabolism , Sulfones/pharmacology , Sulfones/therapeutic use
11.
Proc Natl Acad Sci U S A ; 114(17): E3434-E3443, 2017 04 25.
Article in English | MEDLINE | ID: mdl-28396387

ABSTRACT

Oncogenic PIK3CA mutations are found in a significant fraction of human cancers, but therapeutic inhibition of PI3K has only shown limited success in clinical trials. To understand how mutant PIK3CA contributes to cancer cell proliferation, we used genome scale loss-of-function screening in a large number of genomically annotated cancer cell lines. As expected, we found that PIK3CA mutant cancer cells require PIK3CA but also require the expression of the TCA cycle enzyme 2-oxoglutarate dehydrogenase (OGDH). To understand the relationship between oncogenic PIK3CA and OGDH function, we interrogated metabolic requirements and found an increased reliance on glucose metabolism to sustain PIK3CA mutant cell proliferation. Functional metabolic studies revealed that OGDH suppression increased levels of the metabolite 2-oxoglutarate (2OG). We found that this increase in 2OG levels, either by OGDH suppression or exogenous 2OG treatment, resulted in aspartate depletion that was specifically manifested as auxotrophy within PIK3CA mutant cells. Reduced levels of aspartate deregulated the malate-aspartate shuttle, which is important for cytoplasmic NAD+ regeneration that sustains rapid glucose breakdown through glycolysis. Consequently, because PIK3CA mutant cells exhibit a profound reliance on glucose metabolism, malate-aspartate shuttle deregulation leads to a specific proliferative block due to the inability to maintain NAD+/NADH homeostasis. Together these observations define a precise metabolic vulnerability imposed by a recurrently mutated oncogene.


Subject(s)
Class I Phosphatidylinositol 3-Kinases , Ketoglutarate Dehydrogenase Complex , Mutation , Neoplasm Proteins , Neoplasms , Animals , Cell Line, Tumor , Citric Acid Cycle/genetics , Class I Phosphatidylinositol 3-Kinases/genetics , Class I Phosphatidylinositol 3-Kinases/metabolism , Glycolysis/genetics , Humans , Ketoglutarate Dehydrogenase Complex/biosynthesis , Ketoglutarate Dehydrogenase Complex/genetics , Mice , Mice, Nude , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Neoplasms/enzymology , Neoplasms/genetics , Neoplasms/pathology
12.
Cancer Discov ; 4(4): 452-65, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24444711

ABSTRACT

Although the roles of mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase (PI3K) signaling in KRAS-driven tumorigenesis are well established, KRAS activates additional pathways required for tumor maintenance, the inhibition of which are likely to be necessary for effective KRAS-directed therapy. Here, we show that the IκB kinase (IKK)-related kinases Tank-binding kinase-1 (TBK1) and IKKε promote KRAS-driven tumorigenesis by regulating autocrine CCL5 and interleukin (IL)-6 and identify CYT387 as a potent JAK/TBK1/IKKε inhibitor. CYT387 treatment ablates RAS-associated cytokine signaling and impairs Kras-driven murine lung cancer growth. Combined CYT387 treatment and MAPK pathway inhibition induces regression of aggressive murine lung adenocarcinomas driven by Kras mutation and p53 loss. These observations reveal that TBK1/IKKε promote tumor survival by activating CCL5 and IL-6 and identify concurrent inhibition of TBK1/IKKε, Janus-activated kinase (JAK), and MEK signaling as an effective approach to inhibit the actions of oncogenic KRAS.


Subject(s)
Autocrine Communication , Benzamides/pharmacology , Carcinoma, Non-Small-Cell Lung/pathology , Pyrimidines/pharmacology , Signal Transduction/drug effects , ras Proteins/genetics , Animals , Carcinoma, Non-Small-Cell Lung/genetics , Cell Line, Tumor , Chemokine CCL5/metabolism , Human Umbilical Vein Endothelial Cells , Humans , I-kappa B Proteins/metabolism , Interleukin-6/metabolism , Mice , Neoplasms, Experimental , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/metabolism
13.
PLoS One ; 8(2): e54873, 2013.
Article in English | MEDLINE | ID: mdl-23393560

ABSTRACT

Chromosome 8q24 is the most commonly amplified region across multiple cancer types, and the typical length of the amplification suggests that it may target additional genes to MYC. To explore the roles of the genes most frequently included in 8q24 amplifications, we analyzed the relation between copy number alterations and gene expression in three sets of endometrial cancers (N = 252); and in glioblastoma, ovarian, and breast cancers profiled by TCGA. Among the genes neighbouring MYC, expression of the bromodomain-containing gene ATAD2 was the most associated with amplification. Bromodomain-containing genes have been implicated as mediators of MYC transcriptional function, and indeed ATAD2 expression was more closely associated with expression of genes known to be upregulated by MYC than was MYC itself. Amplifications of 8q24, expression of genes downstream from MYC, and overexpression of ATAD2 predicted poor outcome and increased from primary to metastatic lesions. Knockdown of ATAD2 and MYC in seven endometrial and 21 breast cancer cell lines demonstrated that cell lines that were dependent on MYC also depended upon ATAD2. These same cell lines were also the most sensitive to the histone deacetylase (HDAC) inhibitor Trichostatin-A, consistent with prior studies identifying bromodomain-containing proteins as targets of inhibition by HDAC inhibitors. Our data indicate high ATAD2 expression is a marker of aggressive endometrial cancers, and suggest specific inhibitors of ATAD2 may have therapeutic utility in these and other MYC-dependent cancers.


Subject(s)
Adenosine Triphosphatases/metabolism , DNA-Binding Proteins/metabolism , Endometrial Neoplasms/genetics , Endometrial Neoplasms/metabolism , Genes, myc/physiology , Genomics/methods , ATPases Associated with Diverse Cellular Activities , Adenosine Triphosphatases/genetics , Cell Line, Tumor , DNA-Binding Proteins/genetics , Female , Genes, myc/genetics , Humans , Immunoblotting , In Situ Hybridization, Fluorescence
14.
Curr Opin Mol Ther ; 12(3): 284-93, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20521217

ABSTRACT

The recent development of technologies for whole-genome sequencing, copy number analysis and expression profiling enables the generation of comprehensive descriptions of cancer genomes. However, although the structural analysis and expression profiling of tumors and cancer cell lines can allow the identification of candidate molecules that are altered in the malignant state, functional analyses are necessary to confirm such genes as oncogenes or tumor suppressors. Moreover, recent research suggests that tumor cells also depend on synthetic lethal targets, which are not mutated or amplified in cancer genomes; functional genomics screening can facilitate the discovery of such targets. This review provides an overview of the tools available for the study of functional genomics, and discusses recent research involving the use of these tools to identify potential novel drug targets in cancer.


Subject(s)
Genomics/methods , Genomics/trends , Animals , Antineoplastic Agents/therapeutic use , Chromosome Mapping , Drug Discovery , Genome , Humans , Mutation , Neoplasms/drug therapy , Neoplasms/genetics , Nervous System Neoplasms/genetics , Oncogenes
15.
Nature ; 462(7269): 108-12, 2009 Nov 05.
Article in English | MEDLINE | ID: mdl-19847166

ABSTRACT

The proto-oncogene KRAS is mutated in a wide array of human cancers, most of which are aggressive and respond poorly to standard therapies. Although the identification of specific oncogenes has led to the development of clinically effective, molecularly targeted therapies in some cases, KRAS has remained refractory to this approach. A complementary strategy for targeting KRAS is to identify gene products that, when inhibited, result in cell death only in the presence of an oncogenic allele. Here we have used systematic RNA interference to detect synthetic lethal partners of oncogenic KRAS and found that the non-canonical IkappaB kinase TBK1 was selectively essential in cells that contain mutant KRAS. Suppression of TBK1 induced apoptosis specifically in human cancer cell lines that depend on oncogenic KRAS expression. In these cells, TBK1 activated NF-kappaB anti-apoptotic signals involving c-Rel and BCL-XL (also known as BCL2L1) that were essential for survival, providing mechanistic insights into this synthetic lethal interaction. These observations indicate that TBK1 and NF-kappaB signalling are essential in KRAS mutant tumours, and establish a general approach for the rational identification of co-dependent pathways in cancer.


Subject(s)
Genes, ras/genetics , Oncogene Protein p21(ras)/genetics , Oncogene Protein p21(ras)/metabolism , Protein Serine-Threonine Kinases/metabolism , RNA Interference , Alleles , Apoptosis , Cell Line, Tumor , Cell Survival , Gene Expression Profiling , Genes, Lethal , Humans , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Neoplasms/genetics , Neoplasms/metabolism , Neoplasms/pathology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Proto-Oncogene Mas , Proto-Oncogene Proteins c-rel/metabolism , Signal Transduction , bcl-X Protein/metabolism
16.
J Clin Invest ; 118(1): 51-63, 2008 Jan.
Article in English | MEDLINE | ID: mdl-18060046

ABSTRACT

Breast cancers frequently progress or relapse during targeted therapy, but the molecular mechanisms that enable escape remain poorly understood. We elucidated genetic determinants underlying tumor escape in a transgenic mouse model of Wnt pathway-driven breast cancer, wherein targeted therapy is simulated by abrogating doxycycline-dependent Wnt1 transgene expression within established tumors. In mice with intact tumor suppressor pathways, tumors typically circumvented doxycycline withdrawal by reactivating Wnt signaling, either via aberrant (doxycycline-independent) Wnt1 transgene expression or via acquired somatic mutations in the gene encoding beta-catenin. Germline introduction of mutant tumor suppressor alleles into the model altered the timing and mode of tumor escape. Relapses occurring in the context of null Ink4a/Arf alleles (disrupting both the p16 Ink4a and p19 Arf tumor suppressors) arose quickly and rarely reactivated the Wnt pathway. In addition, Ink4a/Arf-deficient relapses resembled p53-deficient relapses in that both displayed morphologic and molecular hallmarks of an epithelial-to-mesenchymal transition (EMT). Notably, Ink4a/Arf deficiency promoted relapse in the absence of gross genomic instability. Moreover, Ink4a/Arf-encoded proteins differed in their capacity to suppress oncogene independence. Isolated p19 Arf deficiency mirrored p53 deficiency in that both promoted rapid, EMT-associated mammary tumor escape, whereas isolated p16 Ink4a deficiency failed to accelerate relapse. Thus, p19 Arf/p53 pathway lesions may promote mammary cancer relapse even when inhibition of a targeted oncogenic signaling pathway remains in force.


Subject(s)
Cyclin-Dependent Kinase Inhibitor p16/metabolism , Mammary Neoplasms, Experimental/metabolism , Tumor Escape/genetics , Tumor Suppressor Protein p53/metabolism , Wnt1 Protein/metabolism , Alleles , Animals , Cyclin-Dependent Kinase Inhibitor p16/genetics , Female , Genomic Instability/genetics , Mammary Neoplasms, Experimental/genetics , Mammary Neoplasms, Experimental/pathology , Mice , Mice, Transgenic , Mutation , Recurrence , Signal Transduction/genetics , Tumor Suppressor Protein p53/genetics , Wnt1 Protein/genetics
17.
Nat Cell Biol ; 9(5): 493-505, 2007 May.
Article in English | MEDLINE | ID: mdl-17450133

ABSTRACT

Activating Ras mutations can induce either proliferation or senescence depending on the cellular context. To determine whether Ras activation has context-dependent effects in the mammary gland, we generated doxycycline-inducible transgenic mice that permit Ras activation to be titrated. Low levels of Ras activation - similar to those found in non-transformed mouse tissues expressing endogenous oncogenic Kras2 - stimulate cellular proliferation and mammary epithelial hyperplasias. In contrast, high levels of Ras activation - similar to those found in tumours bearing endogenous Kras2 mutations - induce cellular senescence that is Ink4a-Arf- dependent and irreversible following Ras downregulation. Chronic low-level Ras induction results in tumour formation, but only after the spontaneous upregulation of activated Ras and evasion of senescence checkpoints. Thus, high-level, but not low-level, Ras activation activates tumour suppressor pathways and triggers an irreversible senescent growth arrest in vivo. We suggest a three-stage model for Ras-induced tumorigenesis consisting of an initial activating Ras mutation, overexpression of the activated Ras allele and, finally, evasion of p53-Ink4a-Arf-dependent senescence checkpoints.


Subject(s)
Cell Transformation, Neoplastic/metabolism , Cellular Senescence , Epithelial Cells/metabolism , Mammary Glands, Animal/metabolism , Mammary Neoplasms, Experimental/metabolism , Oncogene Protein p21(ras)/metabolism , Precancerous Conditions/metabolism , ADP-Ribosylation Factors/metabolism , Animals , Cell Cycle Proteins/metabolism , Cell Proliferation , Cell Transformation, Neoplastic/drug effects , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/pathology , Cellular Senescence/drug effects , Cellular Senescence/genetics , Cyclin-Dependent Kinase Inhibitor p16/metabolism , Dose-Response Relationship, Drug , Doxycycline/pharmacology , Epithelial Cells/drug effects , Epithelial Cells/pathology , Female , Gene Expression Regulation, Neoplastic , Hyperplasia , Mammary Glands, Animal/drug effects , Mammary Glands, Animal/pathology , Mammary Neoplasms, Experimental/genetics , Mammary Neoplasms, Experimental/pathology , Mice , Mice, Transgenic , Mutation , Oncogene Protein p21(ras)/genetics , Precancerous Conditions/genetics , Precancerous Conditions/pathology , Promoter Regions, Genetic/drug effects , Protein Transport , Receptors, Estrogen/metabolism , Receptors, Progesterone/metabolism , Signal Transduction , Time Factors , Tumor Suppressor Protein p53/metabolism , Up-Regulation
18.
J Neurosci ; 26(25): 6873-84, 2006 Jun 21.
Article in English | MEDLINE | ID: mdl-16793894

ABSTRACT

Neuregulins play crucial roles in early development of Schwann cells (SCs), but their roles in the activities of SCs during denervation and reinnervation of muscle are less clear. In the present study, the Tet-On system has been used in transgenic mice to enable inducible expression of a mutant, constitutively active neuregulin receptor (ErbB2) in SCs. This induction simulates neuregulin signaling to these cells. Reporter transgenes were used to show a tightly regulated, SC-selective expression in muscle. Induction leads to a number of changes in SCs at neuromuscular junctions that mimic the response to muscle denervation/reinnervation. These include process extension, soma migration, and proliferation. SCs also come to express nestin, a protein characteristic of their reaction to muscle denervation. This activation of SCs results in the sprouting of nerve terminals, and these sprouts follow the extensions of the SCs. However, these sprouts and their associated SCs disappear after the removal of the inducer. Last, induction of the active receptor is sufficient to rescue SCs in neonatal muscle from denervation-induced apoptosis. These findings show that the responses of SCs in muscle to denervation can be explained by induction of an autocrine/paracrine neuregulin signaling cascade suggested by previous molecular studies.


Subject(s)
Muscle Denervation/methods , Neuregulins/metabolism , Schwann Cells/metabolism , Signal Transduction/physiology , Animals , Bromodeoxyuridine , Cell Movement/drug effects , Cell Movement/physiology , Cell Proliferation/drug effects , Cloning, Molecular/methods , Doxycycline/pharmacology , Green Fluorescent Proteins/metabolism , Immunohistochemistry/methods , In Situ Nick-End Labeling/methods , In Vitro Techniques , Mice , Mice, Transgenic , Nerve Growth Factors/genetics , Neuromuscular Junction/drug effects , Neuromuscular Junction/physiology , Neuromuscular Junction/radiation effects , RNA, Messenger/metabolism , Receptor, ErbB-2/genetics , Reverse Transcriptase Polymerase Chain Reaction/methods , S100 Calcium Binding Protein beta Subunit , S100 Proteins/genetics , Schwann Cells/drug effects , Signal Transduction/radiation effects , Time Factors
19.
Cancer Res ; 66(12): 6421-31, 2006 Jun 15.
Article in English | MEDLINE | ID: mdl-16778221

ABSTRACT

Women who have their first child early in life have a substantially lower lifetime risk of breast cancer. The mechanism for this is unknown. Similar to humans, rats exhibit parity-induced protection against mammary tumorigenesis. To explore the basis for this phenomenon, we identified persistent pregnancy-induced changes in mammary gene expression that are tightly associated with protection against tumorigenesis in multiple inbred rat strains. Four inbred rat strains that exhibit marked differences in their intrinsic susceptibilities to carcinogen-induced mammary tumorigenesis were each shown to display significant protection against methylnitrosourea-induced mammary tumorigenesis following treatment with pregnancy levels of estradiol and progesterone. Microarray expression profiling of parous and nulliparous mammary tissue from these four strains yielded a common 70-gene signature. Examination of the genes constituting this signature implicated alterations in transforming growth factor-beta signaling, the extracellular matrix, amphiregulin expression, and the growth hormone/insulin-like growth factor I axis in pregnancy-induced alterations in breast cancer risk. Notably, related molecular changes have been associated with decreased mammographic density, which itself is strongly associated with decreased breast cancer risk. Our findings show that hormone-induced protection against mammary tumorigenesis is widely conserved among divergent rat strains and define a gene expression signature that is tightly correlated with reduced mammary tumor susceptibility as a consequence of a normal developmental event. Given the conservation of this signature, these pathways may contribute to pregnancy-induced protection against breast cancer.


Subject(s)
Hormones/genetics , Mammary Neoplasms, Experimental/genetics , Pregnancy, Animal/genetics , Amphiregulin , Animals , EGF Family of Proteins , Female , Gene Expression , Gene Expression Profiling , Glycoproteins/biosynthesis , Glycoproteins/genetics , Growth Hormone/biosynthesis , Growth Hormone/genetics , Hormones/biosynthesis , Intercellular Signaling Peptides and Proteins/biosynthesis , Intercellular Signaling Peptides and Proteins/genetics , Mammary Glands, Animal , Mammary Neoplasms, Experimental/metabolism , Mammary Neoplasms, Experimental/prevention & control , Mice , Oligonucleotide Array Sequence Analysis , Parity , Pregnancy , Pregnancy, Animal/metabolism , Rats , Rats, Inbred F344 , Rats, Inbred Lew , Rats, Inbred WF , Transforming Growth Factor beta/biosynthesis , Transforming Growth Factor beta/genetics , Transforming Growth Factor beta3 , Up-Regulation
20.
Mol Cell Neurosci ; 31(2): 334-45, 2006 Feb.
Article in English | MEDLINE | ID: mdl-16278083

ABSTRACT

We overexpressed a constitutively active form of the neuregulin receptor ErbB2 (CAErbB2) in skeletal muscle fibers in vivo and in vitro by tetracycline-inducible expression. Surprisingly, CAErbB2 expression during embryonic development was lethal and impaired synaptogenesis yielding a phenotype with loss of synaptic contacts, extensive axonal sprouting, and diffuse distribution of acetylcholine receptor (AChR) transcripts, reminiscent of agrin-deficient mice. CAErbB2 expression in cultured myotubes inhibited the formation and maintenance of agrin-induced AChR clusters, suggesting a muscle- and not a nerve-origin for the defect in CAErbB2-expressing mice. Levels of tyrosine phosphorylated MuSK, the signaling component of the agrin receptor, were similar, while tyrosine phosphorylation of AChRbeta subunits was dramatically reduced in CAErbB2-expressing embryos relative to controls. Thus, a gain-of-function manipulation of ErbB2 signaling pathways renders an agrin-deficient-like phenotype that uncouples MuSK and AChR tyrosine phosphorylation.


Subject(s)
Muscle, Skeletal/cytology , Muscle, Skeletal/embryology , Neuromuscular Junction/embryology , Receptor, ErbB-2/metabolism , Synapses/physiology , Agrin/genetics , Agrin/metabolism , Animals , Mice , Mice, Transgenic , Muscle, Skeletal/metabolism , Neuromuscular Junction/metabolism , Protein Isoforms/genetics , Protein Isoforms/metabolism , Receptor Protein-Tyrosine Kinases/genetics , Receptor Protein-Tyrosine Kinases/metabolism , Receptor, ErbB-2/genetics , Receptors, Cholinergic/genetics , Receptors, Cholinergic/metabolism , Signal Transduction/physiology , Tyrosine/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...