Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
1.
Front Neurosci ; 16: 890424, 2022.
Article in English | MEDLINE | ID: mdl-35685771

ABSTRACT

In individuals with body dysmorphic disorder (BDD), perceptual appearance distortions may be related to imbalances in global vs. local visual processing. Understanding the mechanistic brain effects of potential interventions is crucial for rational treatment development. The dorsal visual stream (DVS) is tuned to rapid image presentation, facilitating global/holistic processing, whereas the ventral visual stream (VVS), responsible for local/detailed processing, reduces activation magnitude with shorter stimulus duration. This study tested a strategy of rapid, short-duration face presentation on visual system connectivity. Thirty-eight unmedicated adults with BDD and 29 healthy controls viewed photographs of their faces for short (125 ms, 250 ms, 500 ms) and long (3000 ms) durations during fMRI scan. Dynamic effective connectivity in DVS and VVS was analyzed. BDD individuals exhibited weaker connectivity from occipital to parietal DVS areas than controls for all stimuli durations. Short compared with long viewing durations (125 ms vs. 3,000 ms and 500 ms vs. 3,000 ms) resulted in significantly weaker VVS connectivity from calcarine cortex to inferior occipital gyri in controls; however, there was only a trend for similar results in BDD. The DVS to VVS ratio, representing a balance between global and local processing, incrementally increased with shorter viewing durations in BDD, although it was not statistically significant. In sum, visual systems in those with BDD are not as responsive as in controls to rapid face presentation. Whether rapid face presentation could reduce connectivity in visual systems responsible for local/detailed processing in BDD may necessitate different parameters or strategies. These results provide mechanistic insights for perceptual retraining treatment designs.

2.
Front Psychiatry ; 13: 806327, 2022.
Article in English | MEDLINE | ID: mdl-35321230

ABSTRACT

Diminished motivation to pursue and obtain primary and secondary rewards has been demonstrated in anorexia nervosa (AN). However, the neurobehavioral mechanisms underlying the behavioral activation component of aberrant reward motivation remains incompletely understood. This work aims to explore this underexplored facet of reward motivation in AN. We recruited female adolescents with AN, restricting type (n = 32) and a healthy control group (n = 28). All participants underwent functional magnetic resonance imaging (fMRI) while performing a monetary reward task. Diffusion MRI data was also collected to examine the reward motivation circuit's structural connectivity. Behavioral results demonstrated slower speed of reward-seeking behavior in those with AN compared with controls. Accompanying this was lower functional connectivity and reduced white matter structural integrity of the connection between the ventral tegmental area/substantia nigra pars compacta and the nucleus accumbens within the mesolimbic circuit. Further, there was evidence of neurobehavioral decoupling in AN between reward-seeking behavior and mesolimbic regional activation and functional connectivity. Aberrant activity of the bed nucleus of the stria terminalis (BNST) and its connectivity with the mesolimbic system was also evident in AN during the reward motivation period. Our findings suggest functional and structural dysconnectivity within a mesolimbic reward circuit, neurofunctional decoupling from reward-seeking behavior, and abnormal BNST function and circuit interaction with the mesolimbic system. These results show behavioral indicators of aberrant reward motivation in AN, particularly in its activational component. This is mediated neuronally by mesolimbic reward circuit functional and structural dysconnectivity as well as neurobehavioral decoupling. Based on these findings, we suggest a novel circuit-based mechanism of impaired reward processing in AN, with the potential for translation to developing more targeted and effective treatments in this difficult-to-treat psychiatric condition.

3.
Neuroimage Clin ; 29: 102517, 2021.
Article in English | MEDLINE | ID: mdl-33340976

ABSTRACT

Individuals with gender incongruence (GI) experience serious distress due to incongruence between their gender identity and birth-assigned sex. Sociological, cultural, interpersonal, and biological factors are likely contributory, and for some individuals medical treatment such as cross-sex hormone therapy and gender-affirming surgery can be helpful. Cross-sex hormone therapy can be effective for reducing body incongruence, but responses vary, and there is no reliable way to predict therapeutic outcomes. We used clinical and MRI data before cross-sex hormone therapy as features to train a machine learning model to predict individuals' post-therapy body congruence (the degree to which photos of their bodies match their self-identities). Twenty-five trans women and trans men with gender incongruence participated. The model significantly predicted post-therapy body congruence, with the highest predictive features coming from the cingulo-opercular (R2 = 0.41) and fronto-parietal (R2 = 0.30) networks. This study provides evidence that hormone therapy efficacy can be predicted from information collected before therapy, and that patterns of functional brain connectivity may provide insights into body-brain effects of hormones, affecting one's sense of body congruence. Results could help identify the need for personalized therapies in individuals predicted to have low body-self congruence after standard therapy.


Subject(s)
Transgender Persons , Brain/diagnostic imaging , Female , Gender Identity , Gonadal Steroid Hormones , Hormones , Humans , Male
4.
Brain Imaging Behav ; 15(3): 1235-1252, 2021 Jun.
Article in English | MEDLINE | ID: mdl-32875486

ABSTRACT

Anorexia nervosa (AN) and body dysmorphic disorder (BDD) are characterized by distorted perception of appearance, yet no studies have directly compared the neurobiology associated with body perception. We compared AN and BDD in brain activation and connectivity in relevant networks when viewing images of others' bodies and tested their relationships with clinical symptoms and subjective appearance evaluations. We acquired fMRI data from 64 unmedicated females (20 weight-restored AN, 23 BDD, 21 controls) during a matching task using unaltered or spatial-frequency filtered photos of others' bodies. Using general linear model and independent components analyses we compared brain activation and connectivity in visual, striatal, and parietal networks and performed univariate and partial least squares multivariate analyses to investigate relationships with clinical symptoms and appearance evaluations. AN and BDD showed partially overlapping patterns of hyperconnectivity in the dorsal visual network and hypoconnectivity in parietal network compared with controls. BDD, but not AN, demonstrated hypoactivity in dorsal visual and parietal networks compared to controls. Further, there were significant activity and connectivity differences between AN and BDD in both networks. In both groups, activity and/or connectivity were associated with symptom severity and appearance ratings of others' bodies. Thus, AN and BDD demonstrate both distinct and partially-overlapping aberrant neural phenotypes involved in body processing and visually encoding global features. Nevertheless, in each disorder, aberrant activity and connectivity show relationships to clinically relevant symptoms and subjective perception. These results have implications for understanding distinct and shared pathophysiology underlying perceptual distortions of appearance and may inform future novel treatment strategies.


Subject(s)
Anorexia Nervosa , Body Dysmorphic Disorders , Anorexia Nervosa/diagnostic imaging , Body Dysmorphic Disorders/diagnostic imaging , Brain/diagnostic imaging , Female , Humans , Magnetic Resonance Imaging , Perception
5.
Dialogues Clin Neurosci ; 22(2): 179-187, 2020 06.
Article in English | MEDLINE | ID: mdl-32699518

ABSTRACT

Emerging scientific evidence indicates that frequent digital technology use has a significant impact-both negative and positive-on brain function and behavior. Potential harmful effects of extensive screen time and technology use include heightened attention-deficit symptoms, impaired emotional and social intelligence, technology addiction, social isolation, impaired brain development, and disrupted sleep. However, various apps, videogames, and other online tools may benefit brain health. Functional imaging scans show that internet-naive older adults who learn to search online show significant increases in brain neural activity during simulated internet searches. Certain computer programs and videogames may improve memory, multitasking skills, fluid intelligence, and other cognitive abilities. Some apps and digital tools offer mental health interventions providing self-management, monitoring, skills training, and other interventions that may improve mood and behavior. Additional research on the positive and negative brain health effects of technology is needed to elucidate mechanisms and underlying causal relationships.
.


La evidencia científica que está surgiendo muestra que el empleo frecuente de la tecnología digital tiene un impacto significativo, tanto negativo como positivo, en la función cerebral y en el comportamiento. Los posibles efectos nocivos del tiempo prolongado frente a la pantalla y del empleo de la tecnología incluyen síntomas como marcado déficit de atención, deterioro de la inteligencia emocional y social, adicción a la tecnología, aislamiento social, deterioro del desarrollo cerebral y alteraciones del sueño. Sin embargo, hay varias aplicaciones, videojuegos y otras herramientas en línea que pueden beneficiar la salud del cerebro. En las imágenes cerebrales funcionales se ha observado que los adultos mayores vírgenes a internet que aprenden a buscar en línea, muestran aumentos significativos en la actividad neuronal cerebral durante las búsquedas simuladas en internet. Ciertos programas computacionales y videojuegos pueden mejorar la memoria, las destrezas en tareas múltiples, la fluidez de la inteligencia y otras habilidades cognitivas. Hay varias aplicaciones y herramientas digitales que ofrecen intervenciones en salud mental y que proporcionan automanejo, monitoreo, capacitación junto a otras intervenciones que pueden mejorar el estado de ánimo y el comportamiento. Se require de investigación adicional acerca de los efectos positivos y negativos de la tecnología sobre la salud del cerebro para dilucidar los mecanismos y las relaciones causales subyacentes.


D'après de nouvelles données scientifiques, l'usage fréquent des technologies numériques influe significativement sur le comportement et le fonctionnement cérébral, de façon aussi bien négative que positive. Une pratique excessive des écrans et des technologies numériques peut avoir des effets néfastes comme des symptômes de déficit d'attention, une intelligence émotionnelle et sociale altérée, une dépendance à la technologie, un isolement social, un développement cérébral dégradé et des troubles du sommeil. Cependant, certaines applications, jeux vidéo et autres outils en ligne peuvent avoir des effets bénéfiques sur le cerveau. L'imagerie fonctionnelle montre une activité neuronale significativement augmentée chez des personnes âgées jamais exposées à Internet et qui apprennent à faire des recherches en ligne. Certains programmes informatiques et jeux vidéo peuvent améliorer la mémoire, les compétences multitâches, l'agilité de l'intelligence et d'autres capacités cognitives. Dans le domaine de la santé mentale, différents outils et applications numériques permettant l'autogestion, le suivi, l'acquisition de compétences et d'autres techniques sont susceptibles d'améliorer l'humeur et le comportement du patient. Les effets positifs et négatifs de la technologie sur la santé cérébrale nécessitent d'être encore étudiés afin d'en mieux comprendre les mécanismes et les relations de cause à effet.


Subject(s)
Brain/diagnostic imaging , Brain/physiology , Cognition/physiology , Internet/trends , Mental Health/trends , Social Isolation/psychology , Attention Deficit Disorder with Hyperactivity/diagnostic imaging , Attention Deficit Disorder with Hyperactivity/physiopathology , Attention Deficit Disorder with Hyperactivity/psychology , Digital Technology/trends , Humans , Sleep/physiology
6.
Cereb Cortex ; 30(5): 2897-2909, 2020 05 14.
Article in English | MEDLINE | ID: mdl-31813993

ABSTRACT

Gender identity is a core aspect of self-identity and is usually congruent with birth-assigned sex and own body sex-perception. The neuronal circuits underlying gender identity are unknown, but greater awareness of transgenderism has sparked interest in studying these circuits. We did this by comparing brain activation and connectivity in transgender individuals (for whom gender identity and birth-assigned sex are incongruent) with that in cisgender controls (for whom they are congruent) when performing a body self-identification task during functional magnetic resonance imaging. Thirty transgender and 30 cisgender participants viewed images of their own bodies and bodies morphed in sex toward or opposite to birth-assigned sex, rating each image to the degree they identified with it. While controls identified with images of themselves, transgender individuals identified with images morphed "opposite" to their birth-assigned sex. After covarying out the effect of self-similarity ratings, both groups activated similar self- and body-processing systems when viewing bodies that aligned with their gender identity rather than birth-assigned sex. Additionally, transgender participants had greater limbic involvement when viewing ambiguous, androgynous images of themselves morphed toward their gender identity. These results shed light on underlying self-processing networks specific to gender identity and uncover additional involvement of emotional processing in transgender individuals.


Subject(s)
Body Image/psychology , Brain/diagnostic imaging , Gender Identity , Transgender Persons/psychology , Transsexualism/diagnostic imaging , Transsexualism/psychology , Adolescent , Adult , Brain/physiology , Female , Humans , Magnetic Resonance Imaging/methods , Male , Nerve Net/diagnostic imaging , Nerve Net/physiology , Photic Stimulation/methods , Young Adult
7.
PLoS One ; 14(5): e0213974, 2019.
Article in English | MEDLINE | ID: mdl-31059514

ABSTRACT

Anorexia nervosa (AN) and body dysmorphic disorder (BDD) are potentially life-threatening conditions whose partially overlapping phenomenology-distorted perception of appearance, obsessions/compulsions, and limited insight-can make diagnostic distinction difficult in some cases. Accurate diagnosis is crucial, as the effective treatments for AN and BDD differ. To improve diagnostic accuracy and clarify the contributions of each of the multiple underlying factors, we developed a two-stage machine learning model that uses multimodal, neurobiology-based, and symptom-based quantitative data as features: task-based functional magnetic resonance imaging data using body visual stimuli, graph theory metrics of white matter connectivity from diffusor tensor imaging, and anxiety, depression, and insight psychometric scores. In a sample of unmedicated adults with BDD (n = 29), unmedicated adults with weight-restored AN (n = 24), and healthy controls (n = 31), the resulting model labeled individuals with an accuracy of 76%, significantly better than the chance accuracy of 35% ([Formula: see text]). In the multivariate model, reduced white matter global efficiency and better insight were associated more with AN than with BDD. These results improve our understanding of the relative contributions of the neurobiological characteristics and symptoms of these disorders. Moreover, this approach has the potential to aid clinicians in diagnosis, thereby leading to more tailored therapy.


Subject(s)
Anorexia Nervosa/diagnosis , Anorexia Nervosa/etiology , Body Dysmorphic Disorders/diagnosis , Body Dysmorphic Disorders/etiology , Neuroimaging , Psychometrics , Adolescent , Adult , Biomarkers , Data Analysis , Diagnosis, Differential , Female , Humans , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging , Male , Neuroimaging/methods , Psychometrics/methods , ROC Curve , Young Adult
8.
Hum Brain Mapp ; 40(2): 474-488, 2019 02 01.
Article in English | MEDLINE | ID: mdl-30430680

ABSTRACT

Own body perception, and differentiating and comparing one's body to another person's body, are common cognitive functions that have relevance for self-identity and social interactions. In several psychiatric conditions, including anorexia nervosa, body dysmorphic disorder, gender dysphoria, and autism spectrum disorder, self and own body perception, as well as aspects of social communication are disturbed. Despite most of these conditions having skewed prevalence sex ratios, little is known about whether the neural basis of own body perception differs between the sexes. We addressed this question by investigating brain activation using functional magnetic resonance imaging during a Body Perception task in 15 male and 15 female healthy participants. Participants viewed their own body, bodies of same-sex, or opposite-sex other people, and rated the degree that they appeared like themselves. We found that men and women did not differ in the pattern of brain activation during own body perception compared to a scrambled control image. However, when viewing images of other bodies of same-sex or opposite-sex, men showed significantly stronger activations in attention-related and reward-related brain regions, whereas women engaged stronger activations in striatal, medial-prefrontal, and insular cortices, when viewing the own body compared to other images of the opposite sex. It is possible that other body images, particularly of the opposite sex, may be of greater salience for men, whereas images of own bodies may be more salient for women. These observations provide tentative neurobiological correlates to why women may be more vulnerable than men to conditions involving own body perception.


Subject(s)
Attention/physiology , Brain Mapping , Cerebral Cortex/physiology , Neostriatum/physiology , Reward , Self Concept , Social Perception , Visual Perception/physiology , Adult , Cerebral Cortex/diagnostic imaging , Female , Humans , Magnetic Resonance Imaging , Male , Neostriatum/diagnostic imaging , Sex Characteristics , Sex Factors , Young Adult
9.
Front Psychiatry ; 9: 273, 2018.
Article in English | MEDLINE | ID: mdl-29997532

ABSTRACT

Anorexia nervosa (AN) and body dysmorphic disorder (BDD) share distorted perceptions of appearance with extreme negative emotion, yet the neural phenotypes of emotion processing remain underexplored in them, and they have never been directly compared. We sought to determine if shared and disorder-specific fronto-limbic connectivity patterns characterize these disorders. FMRI data was obtained from three unmedicated groups: BDD (n = 32), weight-restored AN (n = 25), and healthy controls (HC; n = 37), while they viewed fearful faces and rated their own degree of fearfulness in response. We performed dynamic effective connectivity modeling with medial prefrontal cortex (mPFC), rostral anterior cingulate cortex (rACC), and amygdala as regions-of-interest (ROI), and assessed associations between connectivity and clinical variables. HCs exhibited significant within-group bidirectional mPFC-amygdala connectivity, which increased across the blocks, whereas BDD participants exhibited only significant mPFC-to-amygdala connectivity (P < 0.05, family-wise error corrected). In contrast, participants with AN lacked significant prefrontal-amygdala connectivity in either direction. AN showed significantly weaker mPFC-to-amygdala connectivity compared to HCs (P = 0.0015) and BDD (P = 0.0050). The mPFC-to-amygdala connectivity was associated with greater subjective fear ratings (R2 = 0.11, P = 0.0016), eating disorder symptoms (R2 = 0.33, P = 0.0029), and anxiety (R2 = 0.29, P = 0.0055) intensity scores. Our findings, which suggest a complex nosological relationship, have implications for understanding emotion regulation circuitry in these related psychiatric disorders, and may have relevance for current and novel therapeutic approaches.

10.
Proc Natl Acad Sci U S A ; 115(9): 2222-2227, 2018 02 27.
Article in English | MEDLINE | ID: mdl-29440404

ABSTRACT

Cognitive behavioral therapy (CBT) is an effective treatment for many with obsessive-compulsive disorder (OCD). However, response varies considerably among individuals. Attaining a means to predict an individual's potential response would permit clinicians to more prudently allocate resources for this often stressful and time-consuming treatment. We collected resting-state functional magnetic resonance imaging from adults with OCD before and after 4 weeks of intensive daily CBT. We leveraged machine learning with cross-validation to assess the power of functional connectivity (FC) patterns to predict individual posttreatment OCD symptom severity. Pretreatment FC patterns within the default mode network and visual network significantly predicted posttreatment OCD severity, explaining up to 67% of the variance. These networks were stronger predictors than pretreatment clinical scores. Results have clinical implications for developing personalized medicine approaches to identifying individual OCD patients who will maximally benefit from intensive CBT.


Subject(s)
Cognitive Behavioral Therapy , Obsessive-Compulsive Disorder/psychology , Obsessive-Compulsive Disorder/therapy , Adolescent , Adult , Brain Mapping , Female , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Multivariate Analysis , Neural Pathways , Pattern Recognition, Physiological , Treatment Outcome , Young Adult
11.
Neuropsychopharmacology ; 43(5): 1146-1155, 2018 04.
Article in English | MEDLINE | ID: mdl-29052616

ABSTRACT

Depression is a commonly occurring symptom in obsessive-compulsive disorder (OCD), and is associated with worse functional impairment, poorer quality of life, and poorer treatment response. Understanding the underlying neurochemical and connectivity-based brain mechanisms of this important symptom domain in OCD is necessary for development of novel, more globally effective treatments. To investigate biopsychological mechanisms of comorbid depression in OCD, we examined effective connectivity and neurochemical signatures in the pregenual anterior cingulate cortex (pACC), a structure known to be involved in both OCD and depression. Resting-state functional magnetic resonance imaging (fMRI) and 1H magnetic resonance spectroscopy (MRS) data were obtained from participants with OCD (n=49) and healthy individuals of equivalent age and sex (n=25). Granger causality-based effective (directed) connectivity was used to define causal networks involving the right and left pACC. The interplay between fMRI connectivity, 1H MRS and clinical data was explored by applying moderation and mediation analyses. We found that the causal influence of the right dorsal anterior midcingulate cortex (daMCC) on the right pACC was significantly lower in the OCD group and showed significant correlation with depressive symptom severity in the OCD group. Lower and moderate levels of glutamate (Glu) in the right pACC significantly moderated the interaction between right daMCC-pACC connectivity and depression severity. Our results suggest a biochemical-connectivity-psychological model of pACC dysfunction contributing to depression in OCD, particularly involving intracingulate connectivity and glutamate levels in the pACC. These findings have implications for potential molecular and network targets for treatment of this multi-faceted psychiatric condition.


Subject(s)
Depression/physiopathology , Gyrus Cinguli/physiopathology , Obsessive-Compulsive Disorder/physiopathology , Adult , Case-Control Studies , Depression/complications , Female , Functional Neuroimaging , Glutamic Acid/metabolism , Gyrus Cinguli/metabolism , Humans , Magnetic Resonance Imaging , Male , Neural Pathways/physiopathology , Obsessive-Compulsive Disorder/complications , Proton Magnetic Resonance Spectroscopy , Young Adult
12.
J Vis Exp ; (129)2017 11 14.
Article in English | MEDLINE | ID: mdl-29286444

ABSTRACT

In neuroimaging, functional magnetic resonance imaging (fMRI) measures the blood-oxygenation-level dependent (BOLD) signal in the brain. The degree of correlation of the BOLD signal in spatially independent regions of the brain defines the functional connectivity of those regions. During a cognitive fMRI task, a psychophysiological interaction (PPI) analysis can be used to examine changes in the functional connectivity during specific contexts defined by the cognitive task. An example of such a task is one that engages the memory system, asking participants to learn pairs of unrelated words (encoding) and recall the second word in a pair when presented with the first word (retrieval). In the present study, we used this type of associative memory task and a generalized PPI (gPPI) analysis to compare changes in hippocampal connectivity in older adults who are carriers of the Alzheimer's disease (AD) genetic risk factor apolipoprotein-E epsilon-4 (APOEε4). Specifically, we show that the functional connectivity of subregions of the hippocampus changes during encoding and retrieval, the two active phases of the associative memory task. Context-dependent changes in functional connectivity of the hippocampus were significantly different in carriers of APOEε4 compared to non-carriers. PPI analyses make it possible to examine changes in functional connectivity, distinct from univariate main effects, and to compare these changes across groups. Thus, a PPI analysis may reveal complex task effects in specific cohorts that traditional univariate methods do not capture. PPI analyses cannot, however, determine directionality or causality between functionally connected regions. Nevertheless, PPI analyses provide powerful means for generating specific hypotheses regarding functional relationships, which can be tested using causal models. As the brain is increasingly described in terms of connectivity and networks, PPI is an important method for analyzing fMRI task data that is in line with the current conception of the human brain.


Subject(s)
Alzheimer Disease/physiopathology , Alzheimer Disease/psychology , Magnetic Resonance Imaging/methods , Memory/physiology , Adult , Aged , Alzheimer Disease/diagnostic imaging , Brain/diagnostic imaging , Brain/physiopathology , Female , Humans , Male , Middle Aged , Risk Factors
13.
Neuroimage Clin ; 15: 415-427, 2017.
Article in English | MEDLINE | ID: mdl-28616382

ABSTRACT

INTRODUCTION: Brain surgery in the language dominant hemisphere remains challenging due to unintended post-surgical language deficits, despite using pre-surgical functional magnetic resonance (fMRI) and intraoperative cortical stimulation. Moreover, patients are often recommended not to undergo surgery if the accompanying risk to language appears to be too high. While standard fMRI language mapping protocols may have relatively good predictive value at the group level, they remain sub-optimal on an individual level. The standard tests used typically assess lexico-semantic aspects of language, and they do not accurately reflect the complexity of language either in comprehension or production at the sentence level. Among patients who had left hemisphere language dominance we assessed which tests are best at activating language areas in the brain. METHOD: We compared grammar tests (items testing word order in actives and passives, wh-subject and object questions, relativized subject and object clauses and past tense marking) with standard tests (object naming, auditory and visual responsive naming), using pre-operative fMRI. Twenty-five surgical candidates (13 females) participated in this study. Sixteen patients presented with a brain tumor, and nine with epilepsy. All participants underwent two pre-operative fMRI protocols: one including CYCLE-N grammar tests (items testing word order in actives and passives, wh-subject and object questions, relativized subject and object clauses and past tense marking); and a second one with standard fMRI tests (object naming, auditory and visual responsive naming). fMRI activations during performance in both protocols were compared at the group level, as well as in individual candidates. RESULTS: The grammar tests generated more volume of activation in the left hemisphere (left/right angular gyrus, right anterior/posterior superior temporal gyrus) and identified additional language regions not shown by the standard tests (e.g., left anterior/posterior supramarginal gyrus). The standard tests produced more activation in left BA 47. Ten participants had more robust activations in the left hemisphere in the grammar tests and two in the standard tests. The grammar tests also elicited substantial activations in the right hemisphere and thus turned out to be superior at identifying both right and left hemisphere contribution to language processing. CONCLUSION: The grammar tests may be an important addition to the standard pre-operative fMRI testing.


Subject(s)
Brain Mapping/methods , Brain Neoplasms/surgery , Cerebral Cortex/physiopathology , Epilepsy/surgery , Language Disorders/prevention & control , Language , Neurosurgical Procedures/methods , Postoperative Complications/prevention & control , Adult , Cerebral Cortex/diagnostic imaging , Female , Humans , Linguistics , Magnetic Resonance Imaging , Male , Middle Aged , Neurosurgical Procedures/adverse effects , Neurosurgical Procedures/standards , Young Adult
14.
Int J Eat Disord ; 50(2): 127-138, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27566987

ABSTRACT

OBJECTIVE: Individuals with anorexia nervosa (AN) and body dysmorphic disorder (BDD) exhibit distorted perception and negative evaluations of their own appearance; however, little is known about how they perceive others' appearance, and whether or not the conditions share perceptual distortions. METHOD: Thirty participants with BDD, 22 with AN, now weight-restored, and 39 healthy comparison participants (HC) rated photographs of others' faces and bodies on attractiveness, how overweight or underweight they were, and how much photographs triggered thoughts of their own appearance. We compared responses among groups by stimulus type and by level-of-detail (spatial frequency). RESULTS: Compared to HCs, AN and BDD had lower attractiveness ratings for others' bodies and faces for high-detail and low-detail images, rated bodies as more overweight, and were more triggered to think of their own appearance for faces and bodies. In AN, symptom severity was associated with greater triggering of thoughts of own appearance and higher endorsement of overweight ratings for bodies. In BDD, symptom severity was associated with greater triggering of thoughts of own appearance for bodies and higher overweight ratings for low-detail images. BDD was more triggered to think of own facial appearance than AN. DISCUSSION: AN and BDD show similar behavioral phenotypes of negative appearance evaluations for others' faces and bodies, and have thoughts of their own appearance triggered even for images outside of their primary appearance concerns, suggesting a more complex cross-disorder body-image phenotype than previously assumed. Future treatment strategies may benefit from addressing how these individuals evaluate others in addition to themselves. © 2016 Wiley Periodicals, Inc.(Int J Eat Disord 2017; 50:127-138).


Subject(s)
Anorexia Nervosa/psychology , Body Dysmorphic Disorders/psychology , Body Image , Face , Adult , Anorexia Nervosa/complications , Body Dysmorphic Disorders/diagnosis , Female , Humans , Male , Overweight/psychology , Thinness/psychology , Young Adult
15.
Brain Imaging Behav ; 11(4): 964-976, 2017 08.
Article in English | MEDLINE | ID: mdl-27444730

ABSTRACT

Gender dysphoria (GD) is characterized by incongruence between one's identity and gender assigned at birth. The biological mechanisms of GD are unclear. We investigated brain network connectivity patterns involved in own body perception in the context of self in GD. Twenty-seven female-to-male (FtM) individuals with GD, 27 male controls, and 27 female controls underwent resting state fMRI. We compared functional connections within intrinsic connectivity networks involved in self-referential processes and own body perception -default mode network (DMN) and salience network - and visual networks, using independent components analyses. Behavioral correlates of network connectivity were also tested using self-perception ratings while viewing own body images morphed to their sex assigned at birth, and to the sex of their gender identity. FtM exhibited decreased connectivity of anterior and posterior cingulate and precuneus within the DMN compared with controls. In FtM, higher "self" ratings for bodies morphed towards the sex of their gender identity were associated with greater connectivity of the anterior cingulate within the DMN, during long viewing times. In controls, higher ratings for bodies morphed towards their gender assigned at birth were associated with right insula connectivity within the salience network, during short viewing times. Within visual networks FtM showed weaker connectivity in occipital and temporal regions. Results suggest disconnectivity within networks involved in own body perception in the context of self in GD. Moreover, perception of bodies in relation to self may be reflective rather than reflexive, as a function of mesial prefrontal processes. These may represent neurobiological correlates to the subjective disconnection between perception of body and self-identification.


Subject(s)
Body Image , Brain/physiopathology , Gender Dysphoria/physiopathology , Transsexualism/physiopathology , Adolescent , Adult , Brain/diagnostic imaging , Brain Mapping , Cross-Sectional Studies , Female , Gender Dysphoria/diagnostic imaging , Gender Dysphoria/psychology , Gender Identity , Humans , Magnetic Resonance Imaging , Male , Neural Pathways/diagnostic imaging , Neural Pathways/physiopathology , Rest , Transgender Persons/psychology , Transsexualism/diagnostic imaging , Transsexualism/psychology , Young Adult
16.
Eur Neuropsychopharmacol ; 26(10): 1657-66, 2016 10.
Article in English | MEDLINE | ID: mdl-27514293

ABSTRACT

Individuals with body dysmorphic disorder (BDD) and obsessive-compulsive disorder (OCD) are categorized within the same major diagnostic group and both show regional brain hyperactivity in the orbitofrontal cortex (OFC) and the basal ganglia during symptom provocation. While recent studies revealed that degree connectivity of these areas is abnormally high in OCD and positively correlates with symptom severity, no study has investigated degree connectivity in BDD. We used functional magnetic resonance imaging (fMRI) to compare the local and distant degree of functional connectivity in all brain areas between 28 unmedicated BDD participants and 28 demographically matched healthy controls during a face-processing task. Correlational analyses tested for associations between degree connectivity and symptom severity assessed by the BDD version of the Yale-Brown obsessive-compulsive scale (BDD-Y-BOCS). Reduced local amygdalar connectivity was found in participants with BDD. No differences in distant connectivity were found. BDD-Y-BOCS scores significantly correlated with the local connectivity of the posterior-lateral OFC, and distant connectivity of the posterior-lateral and post-central OFC, respectively. These findings represent preliminary evidence that individuals with BDD exhibit brain-behavioral associations related to obsessive thoughts and compulsive behaviors that are highly similar to correlations previously found in OCD, further underscoring their related pathophysiology. This relationship could be further elucidated through investigation of resting-state functional connectivity in BDD, ideally in direct comparison with OCD and other obsessive-compulsive and related disorders.


Subject(s)
Body Dysmorphic Disorders/psychology , Obsessive-Compulsive Disorder/psychology , Amygdala/drug effects , Basal Ganglia/diagnostic imaging , Basal Ganglia/drug effects , Body Dysmorphic Disorders/complications , Body Dysmorphic Disorders/diagnostic imaging , Female , Humans , Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Male , Neural Pathways/diagnostic imaging , Neural Pathways/drug effects , Obsessive-Compulsive Disorder/complications , Obsessive-Compulsive Disorder/diagnostic imaging , Prefrontal Cortex/diagnostic imaging , Prefrontal Cortex/drug effects , Psychiatric Status Rating Scales , Young Adult
17.
J Affect Disord ; 193: 175-84, 2016 Mar 15.
Article in English | MEDLINE | ID: mdl-26773910

ABSTRACT

BACKGROUND: fMRI graph theory reveals resting-state brain networks, but has never been used in pediatric OCD. METHODS: Whole-brain resting-state fMRI was acquired at 3T from 21 children with OCD and 20 age-matched healthy controls. BOLD connectivity was analyzed yielding global and local graph-theory metrics across 100 child-based functional nodes. We also compared local metrics between groups in frontopolar, supplementary motor, and sensorimotor cortices, regions implicated in recent neuroimaging and/or brain stimulation treatment studies in OCD. RESULTS: As in adults, the global metric small-worldness was significantly (P<0.05) lower in patients than controls, by 13.5% (%mean difference=100%X(OCD mean - control mean)/control mean). This suggests less efficient information transfer in patients. In addition, modularity was lower in OCD (15.1%, P<0.01), suggesting less granular - or differently organized - functional brain parcellation. Higher clustering coefficients (23.9-32.4%, P<0.05) were observed in patients in frontopolar, supplementary motor, sensorimotor, and cortices with lower betweenness centrality (-63.6%, P<0.01) at one frontopolar site. These findings are consistent with more locally intensive connectivity or less interaction with other brain regions at these sites. LIMITATIONS: Relatively large node size; relatively small sample size, comorbidities in some patients. CONCLUSIONS: Pediatric OCD patients demonstrate aberrant global and local resting-state network connectivity topologies compared to healthy children. Local results accord with recent views of OCD as a disorder with sensorimotor component.


Subject(s)
Cerebral Cortex/physiopathology , Functional Neuroimaging , Magnetic Resonance Imaging , Neural Pathways/physiopathology , Obsessive-Compulsive Disorder/physiopathology , Adolescent , Case-Control Studies , Child , Female , Humans , Male , Rest
18.
Front Psychiatry ; 6: 74, 2015.
Article in English | MEDLINE | ID: mdl-26042054

ABSTRACT

BACKGROUND: Intensive cognitive-behavioral therapy (CBT) can effectively reduce symptoms in obsessive-compulsive disorder (OCD). However, many relapse after treatment. Few studies have investigated biological markers predictive of follow-up clinical status. The objective was to determine if brain network connectivity patterns prior to intensive CBT predict worsening of clinical symptoms during follow-up. METHODS: We acquired resting-state functional magnetic resonance imaging data from 17 adults with OCD prior to and following 4 weeks of intensive CBT. Functional connectivity data were analyzed to yield graph-theory metrics. We examined the relationship between pre-treatment connectome properties and OCD clinical symptoms before and after treatment and during a 12-month follow-up period. RESULTS: Mean OCD symptom decrease was 40.4 ± 16.4% pre- to post-treatment (64.7% responded; 58.8% remitted), but 35.3% experienced clinically significant worsening during follow-up. From pre- to post-treatment, small-worldness and clustering coefficient significantly increased. Decreases in modularity correlated with decreases in OCD symptoms. Higher pre-treatment small-world connectivity was significantly associated with worsening of OCD symptoms during the follow-up period. Psychometric and neurocognitive measures pre- and post-treatment were not significant predictors. CONCLUSION: This is the first graph-theory connectivity study of the effects of CBT in OCD, and the first to test associations with follow-up clinical status. Results show functional network efficiency as a biomarker of CBT response and relapse in OCD. CBT increases network efficiency as it alleviates symptoms in most patients, but those entering therapy with already high network efficiency are at greater risk of relapse. Results have potential clinical implications for treatment selection.

19.
Psychiatry Res ; 232(1): 115-22, 2015 Apr 30.
Article in English | MEDLINE | ID: mdl-25797401

ABSTRACT

Individuals with body dysmorphic disorder (BDD) suffer from preoccupations with perceived defects in physical appearance, causing severe distress and disability. Although BDD affects 1-2% of the population, the neurobiology is not understood. Discrepant results in previous volumetric studies may be due to small sample sizes, and no study has investigated cortical thickness in BDD. The current study is the largest neuroimaging analysis of BDD. Participants included 49 medication-free, right-handed individuals with DSM-IV BDD and 44 healthy controls matched by age, sex, and education. Using high-resolution T1-weighted magnetic resonance imaging, we computed vertex-wise gray matter (GM) thickness on the cortical surface and GM volume using voxel-based morphometry. We also computed volumes in cortical and subcortical regions of interest. In addition to group comparisons, we investigated associations with symptom severity, insight, and anxiety within the BDD group. In BDD, greater anxiety was significantly associated with thinner GM in the left superior temporal cortex and greater GM volume in the right caudate nucleus. There were no significant differences in cortical thickness, GM volume, or volumes in regions of interest between BDD and control subjects. Subtle associations with clinical symptoms may characterize brain morphometric patterns in BDD, rather than large group differences in brain structure.


Subject(s)
Body Dysmorphic Disorders/pathology , Brain/pathology , Gray Matter/pathology , Adolescent , Adult , Female , Humans , Image Processing, Computer-Assisted , Magnetic Resonance Imaging/methods , Male , Neuroimaging , Organ Size/physiology , Young Adult
20.
Article in English | MEDLINE | ID: mdl-23970941

ABSTRACT

Despite increasing emphasis on the potential of dietary antioxidants in preventing memory loss and on diet as a precursor of neurological health, rigorous studies investigating the cognitive effects of foods and their components are rare. Recent animal studies have reported memory and other cognitive benefits of polyphenols, found abundantly in pomegranate juice. We performed a preliminary, placebo-controlled randomized trial of pomegranate juice in older subjects with age-associated memory complaints using memory testing and functional brain activation (fMRI) as outcome measures. Thirty-two subjects (28 completers) were randomly assigned to drink 8 ounces of either pomegranate juice or a flavor-matched placebo drink for 4 weeks. Subjects received memory testing, fMRI scans during cognitive tasks, and blood draws for peripheral biomarkers before and after the intervention. Investigators and subjects were all blind to group membership. After 4 weeks, only the pomegranate group showed a significant improvement in the Buschke selective reminding test of verbal memory and a significant increase in plasma trolox-equivalent antioxidant capacity (TEAC) and urolithin A-glucuronide. Furthermore, compared to the placebo group, the pomegranate group had increased fMRI activity during verbal and visual memory tasks. While preliminary, these results suggest a role for pomegranate juice in augmenting memory function through task-related increases in functional brain activity.

SELECTION OF CITATIONS
SEARCH DETAIL
...