Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Acta Crystallogr B ; 56(Pt 4): 697-714, 2000 Aug.
Article in English | MEDLINE | ID: mdl-10944263

ABSTRACT

A collaborative workshop was held in May 1999 at the Cambridge Crystallographic Data Centre to test how well currently available methods of crystal structure prediction perform when given only the atomic connectivity for an organic compound. A blind test was conducted on a selection of four compounds and a wide range of methodologies representing, the principal computer programs currently available were used. There were 11 participants who were allowed to propose at most three structures for each compound. No program gave consistently reliable results. However, seven proposed structures were close to an experimental one and were classified as "correct". One compound occurred in two polymorphs, but only one form was predicted correctly among the calculated structures. The basic problem with lattice energy based methods of crystal structure prediction is that many structures are found within a few kJ mol(-1) of the global minimum. The fine detail of the force-field methodology and parametrization influences the energy ranking within each method. Nevertheless, present methods may be useful in providing a set of structures as possible polymorphs for a given molecular structure.

2.
Appl Environ Microbiol ; 65(6): 2478-84, 1999 Jun.
Article in English | MEDLINE | ID: mdl-10347030

ABSTRACT

Correlations between the biomass of phytoplankton and the biomass of bacteria and between the biomass of bacteria and the biomass of protozoans suggest that there is coupling between these compartments of the "microbial loop." To investigate this coupling on the species level, bacteria and protozoans from untreated lake water inocula were allowed to grow on detritus of the green alga Ankistrodesmus falcatus or the cyanobacterium Oscillatoria limnetica in continuous-flow systems for 1 month. Denaturing gradient gel electrophoresis (DGGE) of the 16S and 18S rRNA genes was used to monitor the development of the bacterial community structure and the eukaryotic community structure, respectively. Nonmetric multidimensional scaling of the DGGE profiles revealed the changes in the microbial community structure. This analysis showed that significantly different bacterial communities developed on the green algal detritus and on the cyanobacterial detritus. Although similar results were obtained for the eukaryotic communities, the differences were not significant. Hence, our findings indicate that the origin of detritus can affect the structure of at least the bacterial community. A phylogenetic analysis of 20 18S ribosomal DNA clones that were isolated from the continuous cultures revealed that many sequences were related to the sequences of bacterivorous protozoans (members of the Ciliophora, Rhizopoda, Amoeba, and Kinetoplastida). One clone grouped in a recently established clade whose previously described members are all parasites. The affiliations of about 20% of the clones could not be determined.


Subject(s)
Bacteria/isolation & purification , Chlorophyta/microbiology , Cyanobacteria/physiology , Ecosystem , Electrophoresis/methods , Eukaryota/isolation & purification , Animals , Bacteria/genetics , Bacteria/growth & development , DNA, Bacterial/genetics , DNA, Protozoan/genetics , DNA, Ribosomal/genetics , Eukaryota/genetics , Eukaryota/growth & development , Models, Biological , Molecular Sequence Data , Phylogeny , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 18S/genetics
SELECTION OF CITATIONS
SEARCH DETAIL