Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Geobiology ; 10(1): 72-81, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22118223

ABSTRACT

Coccolithophores have played a key role in the carbon cycle since becoming dominant in the Cretaceous ocean, and their influence depends fundamentally on how they interact with their external carbon environment. Because the photosynthetic carbon-fixing enzyme Rubisco requires high levels of CO(2) for effective catalysis, coccolithophores are known to induce carbon concentrating mechanisms (CCMs) to raise the level of dissolved inorganic carbon (DIC) in an 'internal pool'. The ocean carbon system has varied greatly over the geological past, suggesting that coccolithophore interactions with that external carbon environment will have changed in parallel. The widespread present-day coccolithophore Gephyrocapsa oceanica was acclimated here to a geological scale change in the seawater carbon system (five times higher DIC and alkalinity). Significant acclimation in response to the external carbon environment was demonstrated by a fourfold increase in the K(m) substrate concentration requirement for half-maximum photosynthetic carbon fixation rates (suggesting that CCMs were down-regulated when ambient carbon was more available). There was, however, no difference in growth rate, morphology or calcification, suggesting that calcification is not coupled to photosynthesis as one of the CCMs induced here and that productivity (growth rate and calcification) is not carbon-limited under representative present-day conditions. Beyond the kinetic parameters of photosynthesis, the only other indication of changed cell physiology seen was the increased fractionation of carbon isotopes into organic matter. These findings demonstrate that G. oceanica changes its carbon-use physiology to maintain consistent photosynthetic carbon fixation in concert with different levels of ambient DIC without changing its morphology or calcification.


Subject(s)
Carbon/metabolism , Haptophyta/growth & development , Haptophyta/metabolism , Seawater/chemistry , Seawater/microbiology , Adaptation, Physiological , Calcium/metabolism , Photosynthesis
2.
J Exp Bot ; 58(14): 3971-85, 2007.
Article in English | MEDLINE | ID: mdl-18162629

ABSTRACT

In higher plants there are two forms of ferredoxin NADP(+) oxidoreductase (FNR), a photosynthetic pFNR primarily required for the photoreduction of NADP(+), and a heterotrophic hFNR which generates reduced ferredoxin by utilizing electrons from NADPH produced during carbohydrate oxidation. The aim of this study was to investigate the presence of multiple forms of FNR in wheat leaves and the capacity of FNR isoforms to respond to changes in reductant demand through varied expression and N-terminal processing. Two forms of pFNR mRNA (pFNRI and pFNRII) were expressed in a similar pattern along the 12 cm developing primary wheat leaf, with the highest levels observed in plants grown continuously in the dark in the presence (pFNRI) or absence (pFNRII) of nitrate respectively. pFNR protein increased from the leaf base to tip. hFNR mRNA and protein was in the basal part of the leaf in plants grown in the presence of nitrate. FNR activity in plants grown in a light/dark cycle without nitrate was mainly due to pFNR, whilst hFNR contributed significantly in nitrate-fed plants. The potential role of distinct forms of FNR in meeting the changing metabolic capacity and reductant demands along the linear gradient of developing cells of the leaf are discussed. Furthermore, evidence for alternative N-terminal cleavage sites of pFNR acting as a means of discriminating between ferredoxins and the implications of this in providing a more effective flow of electrons through a particular pathway in vivo is considered.


Subject(s)
Ferredoxin-NADP Reductase/metabolism , Plant Leaves/enzymology , Triticum/enzymology , Amino Acid Sequence , Ferredoxin-NADP Reductase/genetics , Gene Expression Regulation, Plant , Molecular Sequence Data
SELECTION OF CITATIONS
SEARCH DETAIL
...