Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 12175, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38806603

ABSTRACT

A symmetry-breaking in rotational spatial pattern of quasi-periodic solitary oscillations is revealed with tomography measurement of plasma emission, simultaneously with background asymmetry in stationary plasma structure. Although the oscillatory pattern deformation is a natural course in the presence of asymmetry, elaborate analyses identify existence unfeatured nonlinear effects of the background asymmetry, i.e., its nonlinear couplings with harmonic modes of rotational symmetry, to produce non-harmonic mode to break the symmetry and cause the oscillatory pattern to be chaotic. The findings suggest the unrecognized fundamental process for plasmas to be turbulent.

2.
Sci Rep ; 12(1): 19799, 2022 Dec 12.
Article in English | MEDLINE | ID: mdl-36509803

ABSTRACT

High-spatial resolution observation of high-wavenumber broadband turbulence is achieved by controlling the magnetic field to be relatively low and measuring with a azimuthally arranged multi-channel Langmuir array in a basic laboratory plasma. The observed turbulence consists of narrowband low-frequency fluctuations and broadband high-frequency turbulent fluctuations. The low-frequency fluctuations have a frequency of about 0.7 times the ion cyclotron frequency and a spatial scale of 1/10 of the ion inertial scale. In comparison, high-frequency fluctuations have a higher frequency than the ion cyclotron frequency and spatial scales of 1/10-1/40 of the ion inertial scale. Two-dimensional correlation analysis evaluates the spatial and temporal correlation lengths and reveals that the high-wavenumber broadband fluctuations have turbulent characteristics. The measurements give us further understanding of small scale turbulence in space and fusion plasmas.

3.
Sci Rep ; 11(1): 3720, 2021 Feb 19.
Article in English | MEDLINE | ID: mdl-33608562

ABSTRACT

A tomography system is installed as one of the diagnostics of new age to examine the three-dimensional characteristics of structure and dynamics including fluctuations of a linear magnetized helicon plasma. The system is composed of three sets of tomography components located at different axial positions. Each tomography component can measure the two-dimensional emission profile over the entire cross-section of plasma at different axial positions in a sufficient temporal scale to detect the fluctuations. The four-dimensional measurement including time and space successfully obtains the following three results that have never been found without three-dimensional measurement: (1) in the production phase, the plasma front propagates from the antenna toward the end plate with an ion acoustic velocity. (2) In the steady state, the plasma emission profile is inhomogeneous, and decreases along the axial direction in the presence of the azimuthal asymmetry. Furthermore, (3) in the steady state, the fluctuations should originate from a particular axial position located downward from the helicon antenna.

4.
Phys Rev Lett ; 111(11): 115001, 2013 Sep 13.
Article in English | MEDLINE | ID: mdl-24074096

ABSTRACT

A high-frequency (∼0.4 MHz) fluctuation is excited by an electron temperature gradient (ETG) perpendicular to magnetic field lines, which is consistent with an ETG mode. When the fluctuation amplitude of the ETG mode exceeds a certain threshold, the mode gradually becomes saturated and a low-frequency (∼7 kHz) fluctuation which is originally caused by a drift wave is enhanced, corresponding to the saturation of the ETG mode. In addition, a nonlinear coupling, specifically, the bicoherence between the ETG mode and the drift wave mode, begins to increase when the ETG strength exceeds the threshold, which simultaneously occurs with the saturation of the ETG mode. Thus, it was determined that the ETG mode stimulates the drift wave mode excitement via multiscale nonlinear interaction between the high-frequency (∼MHz) and low-frequency (∼kHz) fluctuations, which ultimately causes ETG mode energy to be transferred to the drift wave mode.

5.
Rev Sci Instrum ; 81(5): 053506, 2010 May.
Article in English | MEDLINE | ID: mdl-20515138

ABSTRACT

An electron temperature gradient (ETG) is formed perpendicular to the magnetic field lines by superimposing low-temperature thermionic electrons emitted from a tungsten hot plate upon high-temperature electrons of an electron cyclotron resonance plasma, which pass through two different-shaped mesh grids. The radial profile of the plasma space potential can be controlled independent of the ETG by changing the bias voltages of the hot plate.

SELECTION OF CITATIONS
SEARCH DETAIL
...