Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Methods Mol Biol ; 2833: 65-77, 2024.
Article in English | MEDLINE | ID: mdl-38949702

ABSTRACT

Pyrazinamide (PZA) is a key component of chemotherapy for the treatment of drug-susceptible tuberculosis (TB) and is likely to continue to be included in new drug combinations. Potentiation of PZA could be used to reduce the emergence of resistance, shorten treatment times, and lead to a reduction in the quantity of PZA consumed by patients, thereby reducing the toxic effects. Acidified medium is required for the activity of PZA against Mycobacterium tuberculosis. In vitro assessments of pyrazinamide activity are often avoided because of the lack of standardization, which has led to a lack of effective in vitro tools for assessing and/or enhancing PZA activity.We have developed and optimized a novel, robust, and reproducible, microtiter plate assay, that centers around acidity levels that are low enough for PZA activity. The assay can be applied to the evaluation of novel compounds for the identification of potentiators that enhance PZA activity. In this assay, potentiation of PZA is demonstrated to be statistically significant with the addition of rifampicin (RIF), which can, therefore, be used as a positive control. Conversely, norfloxacin demonstrates no potentiating activity with PZA and can be used as a negative control. The method, and the associated considerations, described here, can be adapted in the search for potentiators of other antimicrobials.


Subject(s)
Antitubercular Agents , Microbial Sensitivity Tests , Mycobacterium tuberculosis , Pyrazinamide , Pyrazinamide/pharmacology , Mycobacterium tuberculosis/drug effects , Antitubercular Agents/pharmacology , Hydrogen-Ion Concentration , Microbial Sensitivity Tests/methods , Drug Synergism , Rifampin/pharmacology , Humans
2.
ACS Omega ; 4(25): 20873-20881, 2019 Dec 17.
Article in English | MEDLINE | ID: mdl-31867477

ABSTRACT

The development of new antitubercular agents for the treatment of infections caused by multidrug-resistant (MDR) Mycobacterium tuberculosis is an urgent priority. Pyrrolobenzodiazepines (PBDs) are a promising class of antibacterial agents that were initially discovered and isolated from a range of Streptomyces species. Recently, C8-linked PBD monomers have been shown to work by inhibiting DNA gyrase and have demonstrated activity against M. tuberculosis. However, both PBD monomers and dimers are toxic to eukaryotic cells, limiting their development as antibacterial agents. To eliminate the toxicity associated with PBDs and explore the effect of C8-modification with a known antibacterial agent with the same mechanism of action (i.e., ciprofloxacin, a gyrase inhibitor), we synthesized a C8-linked PBD-ciprofloxacin (PBD-CIP, 3) hybrid. The hybrid compound displayed minimum inhibitory concentration values of 0.4 or 2.1 µg/mL against drug-sensitive and drug-resistant M. tuberculosis strains, respectively. A molecular modeling study showed good interaction of compound 3 with wild-type M. tuberculosis DNA gyrase, suggesting gyrase inhibition as a possible mechanism of action. Compound 3 is a nontoxic combination hybrid that can be utilized as a new scaffold and further optimized to develop new antitubercular agents.

3.
Mol Cell ; 72(2): 263-274.e5, 2018 10 18.
Article in English | MEDLINE | ID: mdl-30244835

ABSTRACT

Antibiotic-resistant bacterial pathogens pose an urgent healthcare threat, prompting a demand for new medicines. We report the mode of action of the natural ansamycin antibiotic kanglemycin A (KglA). KglA binds bacterial RNA polymerase at the rifampicin-binding pocket but maintains potency against RNA polymerases containing rifampicin-resistant mutations. KglA has antibiotic activity against rifampicin-resistant Gram-positive bacteria and multidrug-resistant Mycobacterium tuberculosis (MDR-M. tuberculosis). The X-ray crystal structures of KglA with the Escherichia coli RNA polymerase holoenzyme and Thermus thermophilus RNA polymerase-promoter complex reveal an altered-compared with rifampicin-conformation of KglA within the rifampicin-binding pocket. Unique deoxysugar and succinate ansa bridge substituents make additional contacts with a separate, hydrophobic pocket of RNA polymerase and preclude the formation of initial dinucleotides, respectively. Previous ansa-chain modifications in the rifamycin series have proven unsuccessful. Thus, KglA represents a key starting point for the development of a new class of ansa-chain derivatized ansamycins to tackle rifampicin resistance.


Subject(s)
Biological Products/pharmacology , Drug Resistance, Bacterial/drug effects , Mycobacterium tuberculosis/drug effects , Rifabutin/pharmacology , Rifampin/pharmacology , Rifamycins/pharmacology , Antitubercular Agents/pharmacology , DNA-Directed RNA Polymerases/genetics , Drug Resistance, Bacterial/genetics , Escherichia coli/drug effects , Escherichia coli/genetics , Humans , Microbial Sensitivity Tests/methods , Mutation/drug effects , Mutation/genetics , Mycobacterium tuberculosis/genetics , Thermus thermophilus/drug effects , Thermus thermophilus/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...