Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Free Radic Biol Med ; 204: 195-206, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37146699

ABSTRACT

The important pathway toward liver fibrosis is the TGF-ß1-induced activation of hepatic stellate cells (HSCs). To discover chemicals to inhibit liver fibrosis, we screened 3000 chemicals using cell array system where human HSCs line LX2 cells are activated with TGF-ß1. We discovered 3,7-dimethoxyflavone (3,7-DMF) as a chemical to inhibit TGF-ß1-induced activation of HSCs. In the thioacetamide (TAA)-induced mouse liver fibrosis model, 3,7-DMF treatment via intraperitoneal or oral administration prevented liver fibrosis as well as reversed the established fibrosis in the separate experiments. It also reduced liver enzyme elevation, suggesting protective effect on hepatocytes because it has antioxidant effect. Treatment with 3,7-DMF induced antioxidant genes, quenches ROS away, and improved the hepatocyte condition that was impaired by H2O2 as reflected by restoration of HNF-4α and albumin. In the TAA-mouse liver injury model also, TAA significantly increased ROS in the liver which led to decrease of albumin and nuclear expression of HNF-4α, increase of TGF-ß1 and hepatocytes death, accumulation of lipid, and extra-nuclear localization of HMGB1. Treatment of 3,7-DMF normalized all these pathologic findings and prevented or resolved liver fibrosis. In conclusion, we discovered 3,7-DMF that inhibits liver fibrosis based on dual actions; antioxidant and inhibitor of TGF-ß1-induced activation of HSCs.


Subject(s)
Antioxidants , Hepatic Stellate Cells , Mice , Animals , Humans , Hepatic Stellate Cells/metabolism , Antioxidants/pharmacology , Antioxidants/metabolism , Transforming Growth Factor beta1/genetics , Transforming Growth Factor beta1/metabolism , Reactive Oxygen Species/metabolism , Hydrogen Peroxide/metabolism , Liver Cirrhosis/chemically induced , Liver Cirrhosis/drug therapy , Liver Cirrhosis/genetics , Liver/metabolism , Disease Models, Animal
3.
Cell Biosci ; 11(1): 120, 2021 Jul 01.
Article in English | MEDLINE | ID: mdl-34210352

ABSTRACT

BACKGROUND: The homing capacity of human mesenchymal stem cells (hMSCs) to the injured sites enables systemic administration of hMSCs in clinical practice. In reality, only a small proportion of MSCs are detected in the target tissue, which is a major bottleneck for MSC-based therapies. We still don't know the mechanism how MSCs are chemo-attracted to certain target organ and engrafted through trans-endothelial migration. In this study, we aimed to determine the mechanism how the circulating hMSCs home to the injured liver. METHODS AND RESULTS: When we compare the cytokine array between normal and injured mouse liver at 1-day thioacetamide (TAA)-treatment, we found that chemerin, CXCL2, and CXCL10 were higher in the injured liver than normal one. Among three, only chemerin was the chemoattractant of hMSCs in 2D- and 3D-migration assay. Analysis of the signal transduction pathways in hMSCs showed that chemerin activated the phosphorylation of JNK1/2, ERK1/2 and p38, and finally upregulated CD44, ITGA4, and MMP-2 that are involved in the transendothelial migration and extravasation of MSCs. Upstream transcription regulators of CD44, ITGA4, and MMP-2 after chemerin treatment were MZF1, GATA3, STAT3, and STAT5A. To develop chemerin as a chemoattractant tool, we cloned gene encoding the active chemerin under the CMV promoter (CMV-aChemerin). We analyzed the migration of hMSCs in the 3D model for space of the Disse, which mimics transmigration of hMSCs in the liver. CMV-aChemerin-transfected hepatocytes were more effective to attract hMSC than control hepatocytes, leading to the enhanced transendothelial migration and homing of hMSCs to liver. The homing efficiency of the intravascularly-delivered hMSCs to liver was evaluated after systemic introduction of the CMV-aChemerin plasmid packed in liposome-vitamin A conjugates which target liver. CMV-aChemerin plasmid targeting liver significantly enhanced homing efficiency of hMSCs to liver compared with control plasmid vector. CONCLUSIONS: Chemerin is the newly found chemoattractant of hMSCs and may be a useful tool to manipulate the homing of the intravascularly-administered hMSC to the specific target organ.

4.
Biomaterials ; 275: 120980, 2021 08.
Article in English | MEDLINE | ID: mdl-34198163

ABSTRACT

We expanded the application of endothelin-1 (EDN1) by treating human mesenchymal stem cell (hMSC) organotypic spinal cord slice cultures with EDN1. EDN1-treated hMSCs significantly enhanced neuronal outgrowth. The underlying mechanism of this effect was evaluated via whole-genome methylation. EDN1 increased whole-genome demethylation and euchromatin. To observe demethylation downstream of EDN1, deaminases and glycosylases were screened, and APOBEC1 was found to cause global demethylation and OCT4 gene activation. The sequence of methyl-CpG-binding domain showed similar patterns between EDN1- and APOBEC1-induced demethylation. SWI/SNF-related, matrix-associated, actin-dependent regulator of chromatin subfamily A member 4 (SMARC A4) and SMARC subfamily D, member 2 (SMARC D2) were screened via methyl-CpG-binding domain sequencing as a modulator in response to EDN1. Chromatin immunoprecipitation of the H3K9me3, H3K27me3, and H3K4me4 binding sequences on the APOBEC1 promoter was analyzed following treatment with or without siSMARC A4 or siSMARC D2. The results suggested that SMARC A4 and SMARC D2 induced a transition from H3K9me3 to H3K4me3 in the APOBEC1 promoter region following EDN1 treatment. Correlations between EDN1 pathways and therapeutic efficacy in hBM-MSCs were determined in a sciatic nerve injury mouse model. Thus, EDN1 may be a useful novel-concept bioactive peptide and biomaterial component for improving hMSC regenerative capability.


Subject(s)
Mesenchymal Stem Cells , Sciatic Neuropathy , Animals , Bone Marrow , Endothelin-1 , Humans , Mice , Sciatic Nerve
5.
Cell Biosci ; 11(1): 3, 2021 Jan 06.
Article in English | MEDLINE | ID: mdl-33407858

ABSTRACT

BACKGROUND: Hepatic stellate cells (HSCs) are activated in response to liver injury with TIF1γ-suppression, leading to liver fibrosis. Here, we examined the mechanism how reduction of TIF1γ in HSCs induces damage on hepatocytes and liver fibrosis. METHOD: Lrat:Cas9-ERT2:sgTif1γ mice were treated Tamoxifen (TMX) or wild-type mice were treated Thioacetamide (TAA). HSCs were isolated from mice liver and analyzed role of Tif1γ. HepG2 were treated retinol with/without siRNA for Stimulated by retinoic acid 6 (STRA6) or Retinoic acid receptor(RAR)-antagonist, and LX2 were treated siTIF1γ and/or siSTRA6. TAA treated mice were used for evaluation of siSTRA6 effect in liver fibrosis. RESULTS: When we blocked the Tif1γ in HSCs using Lrat:Cas9-ERT2:sgTif1γ mice, retinol is distributed into hepatocytes. Retinol influx was confirmed using HepG2, and the increased intracellular retinol led to the upregulation of lipogenesis-related-genes and triglyceride. This effect was inhibited by a RAR-antagonist or knock-down of STRA6. In the LX2, TIF1γ-suppression resulted in upregulation of STRA6 and retinol release, which was inhibited by STRA6 knock-down. The role of STRA6-mediated retinol transfer from HSCs to hepatocytes in liver fibrosis was demonstrated by in vivo experiments where blocking of STRA6 reduced fibrosis. CONCLUSIONS: Retinol from HSCs via STRA6 in response to injury with TIF1γ-reduction is taken up by hepatocytes via STRA6, leading to fat-deposition and damage, and liver fibrosis.

6.
J Exp Med ; 217(6)2020 06 01.
Article in English | MEDLINE | ID: mdl-32267915

ABSTRACT

Transforming growth factor ß (TGFß) is a crucial factor in fibrosis, and transcriptional intermediary factor 1γ (TIF1γ) is a negative regulator of the TGFß pathway; however, its role in liver fibrosis is unknown. In this study, mesenchymal stem cells derived from human embryonic stem cells (hE-MSCs) that secrete hepatocyte growth factor (HGF) were used to observe the repair of thioacetamide (TAA)-induced liver fibrosis. Our results showed that TIF1γ was significantly decreased in LX2 cells when exposed to TGFß1. Such decrease of TIF1γ was significantly prevented by co-culture with hE-MSCs. Interaction of TIF1γ with SMAD2/3 and binding to the promoter of the α-smooth muscle gene (αSMA) suppressed αSMA expression. Phosphorylation of cAMP response element-binding protein (CREB) and binding on the TIF1γ promoter region induced TIF1γ expression. Furthermore, hepatic stellate cell-specific TIF1γ-knockout mice showed aggravation of liver fibrosis. In conclusion, loss of TIF1γ aggravates fibrosis, suggesting that a strategy to maintain TIF1γ during liver injury would be a promising therapeutic approach to prevent or reverse liver fibrosis.


Subject(s)
Hepatic Stellate Cells/metabolism , Hepatic Stellate Cells/pathology , Liver Cirrhosis/metabolism , Liver Cirrhosis/pathology , Transcription Factors/metabolism , Actins/metabolism , Animals , Cells, Cultured , Cyclic AMP Response Element-Binding Protein/metabolism , Hepatocyte Growth Factor/metabolism , Humans , Male , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/metabolism , Mice, Knockout , Mice, Nude , Mice, Transgenic , Phosphorylation , Promoter Regions, Genetic/genetics , Protein Binding , Reproducibility of Results , Smad Proteins/metabolism , Thioacetamide , Transcription Factors/genetics , Up-Regulation
7.
Mol Ther Methods Clin Dev ; 13: 503-511, 2019 Jun 14.
Article in English | MEDLINE | ID: mdl-31194009

ABSTRACT

In our previous study, we identified differences in the levels of CDH2 and vascular endothelial growth factor (VEGF) between effective and ineffective clones of human umbilical cord blood (hUCB) mesenchymal stem cells (MSCs), with regard to the infarcted rat myocardium. In this study, we compared gene expression profiles between the effective and ineffective clones and identified that endothelin-1 (EDN1) is enriched in the effective clone. In the mechanistic analyses, EDN1 significantly increased expression of CDH2 and VEGF through endothelin receptor A (EDNRA), which was prevented by EDNRA blocker, BQ123. To decipher how EDN1 induced gene expression of CDH2, we performed a promoter activity assay and identified GATA2 and MZF1 as inducers of CDH2. EDN1 significantly enhanced the promoter activity of the CDH2 gene, which was obliterated by the deletion or point mutation at GATA2 or MZF1 binding sequence. Next, therapeutic efficacy of EDN1-priming of hUCB-MSCs was tested in a rat myocardial infarction (MI) model. EDN1-primed MSCs were superior to naive MSCs at 8 weeks after MI in improving myocardial contractility (p < 0.05), reducing fibrosis area (p < 0.05), increasing engraftment efficiency (p < 0.05), and improving capillary density (p < 0.05). In conclusion, EDN1 induces CDH2 and VEGF expression in hUCB-MSCs, leading to the improved therapeutic efficacy in rat MI, suggesting that EDN1 is a potential priming agent for MSCs in regenerative medicine.

SELECTION OF CITATIONS
SEARCH DETAIL
...