Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Plants (Basel) ; 13(5)2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38475499

ABSTRACT

Our research focuses on addressing the challenge of crop diseases and pest infestations in agriculture by utilizing UAV technology for improved crop monitoring through unmanned aerial vehicles (UAVs) and enhancing the detection and classification of agricultural pests. Traditional approaches often require arduous manual feature extraction or computationally demanding deep learning (DL) techniques. To address this, we introduce an optimized model tailored specifically for UAV-based applications. Our alterations to the YOLOv5s model, which include advanced attention modules, expanded cross-stage partial network (CSP) modules, and refined multiscale feature extraction mechanisms, enable precise pest detection and classification. Inspired by the efficiency and versatility of UAVs, our study strives to revolutionize pest management in sustainable agriculture while also detecting and preventing crop diseases. We conducted rigorous testing on a medium-scale dataset, identifying five agricultural pests, namely ants, grasshoppers, palm weevils, shield bugs, and wasps. Our comprehensive experimental analysis showcases superior performance compared to various YOLOv5 model versions. The proposed model obtained higher performance, with an average precision of 96.0%, an average recall of 93.0%, and a mean average precision (mAP) of 95.0%. Furthermore, the inherent capabilities of UAVs, combined with the YOLOv5s model tested here, could offer a reliable solution for real-time pest detection, demonstrating significant potential to optimize and improve agricultural production within a drone-centric ecosystem.

2.
Plants (Basel) ; 12(14)2023 Jul 14.
Article in English | MEDLINE | ID: mdl-37514261

ABSTRACT

Pumpkins are a nutritious and globally enjoyed fruit for their rich and earthy flavor. The biophysical properties of pumpkins play an important role in determining their yield. However, manual in-field techniques for monitoring these properties can be time-consuming and labor-intensive. To address this, this research introduces a novel approach that feeds high-resolution pumpkin images to train a mathematical model to automate the measurement of each pumpkin's biophysical properties. Color correction was performed on the dataset using a color-checker panel to minimize the impact of varying light conditions on the RGB images. A segmentation model was then trained to effectively recognize two fundamental components of each pumpkin: the fruit and vine. Real-life measurements of various biophysical properties, including fruit length, fruit width, stem length, stem width and fruit peel color, were computed and compared with manual measurements. The experimental results on 10 different pumpkin samples revealed that the framework obtained a small average mean absolute percentage error (MAPE) of 2.5% compared to the manual method, highlighting the potential of this approach as a faster and more efficient alternative to conventional techniques for monitoring the biophysical properties of pumpkins.

3.
Sci Rep ; 13(1): 7434, 2023 May 08.
Article in English | MEDLINE | ID: mdl-37156854

ABSTRACT

Heat networks play a vital role in the energy sector by offering thermal energy to residents in certain countries. Effective management and optimization of heat networks require a deep understanding of users' heat usage patterns. Irregular patterns, such as peak usage periods, can exceed the design capacities of the system. However, previous work has mostly neglected the analysis of heat usage profiles or performed on a small scale. To close the gap, this study proposes a data-driven approach to analyze and predict heat load in a district heating network. The study uses data from over eight heating seasons of a cogeneration DH plant in Cheongju, Korea, to build analysis and forecast models using supervised machine learning (ML) algorithms, including support vector regression (SVR), boosting algorithms, and multilayer perceptron (MLP). The models take weather data, holiday information, and historical hourly heat load as input variables. The performance of these algorithms is compared using different training sample sizes of the dataset. The results show that boosting algorithms, particularly XGBoost, are more suitable ML algorithms with lower prediction errors than SVR and MLP. Finally, different explainable artificial intelligence approaches are applied to provide an in-depth interpretation of the trained model and the importance of input variables.

4.
Sensors (Basel) ; 22(21)2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36366083

ABSTRACT

Accurately estimating respiratory rate (RR) has become essential for patients and the elderly. Hence, we propose a novel method that uses exact Gaussian process regression (EGPR)-assisted hybrid feature extraction and feature fusion based on photoplethysmography and electrocardiogram signals to improve the reliability of accurate RR and uncertainty estimations. First, we obtain the power spectral features and use the multi-phase feature model to compensate for insufficient input data. Then, we combine four different feature sets and choose features with high weights using a robust neighbor component analysis. The proposed EGPR algorithm provides a confidence interval representing the uncertainty. Therefore, the proposed EGPR algorithm, including hybrid feature extraction and weighted feature fusion, is an excellent model with improved reliability for accurate RR estimation. Furthermore, the proposed EGPR methodology is likely the only one currently available that provides highly stable variation and confidence intervals. The proposed EGPR-MF, 0.993 breath per minute (bpm), and EGPR-feature fusion, 1.064 (bpm), show the lowest mean absolute error compared to the other models.


Subject(s)
Respiratory Rate , Signal Processing, Computer-Assisted , Humans , Aged , Uncertainty , Reproducibility of Results , Photoplethysmography/methods , Algorithms , Heart Rate
5.
Sensors (Basel) ; 22(21)2022 Nov 02.
Article in English | MEDLINE | ID: mdl-36366135

ABSTRACT

In order to provide intelligent and efficient healthcare services in the Internet of Medical Things (IoMT), human action recognition (HAR) can play a crucial role. As a result of their stringent requirements, such as high computational complexity and memory efficiency, classical HAR techniques are not applicable to modern and intelligent healthcare services, e.g., IoMT. To address these issues, we present in this paper a novel HAR technique for healthcare services in IoMT. This model, referred to as the spatio-temporal graph convolutional network (STGCN), primarily aims at skeleton-based human-machine interfaces. By independently extracting spatial and temporal features, STGCN significantly reduces information loss. Spatio-temporal information is extracted independently of the exact spatial and temporal point, ensuring the extraction of useful features for HAR. Using only joint data and fewer parameters, we demonstrate that our proposed STGCN achieved 92.2% accuracy on the skeleton dataset. Unlike multi-channel methods, which use a combination of joint and bone data and have a large number of parameters, multi-channel methods use both joint and bone data. As a result, STGCN offers a good balance between accuracy, memory consumption, and processing time, making it suitable for detecting medical conditions.


Subject(s)
Human Activities , Internet , Humans
6.
Sensors (Basel) ; 22(21)2022 Nov 02.
Article in English | MEDLINE | ID: mdl-36366138

ABSTRACT

Graph theory is a useful mathematical structure used to model pairwise relations between sensor nodes in wireless sensor networks. Graph equations are nothing but equations in which the unknown factors are graphs. Many problems and results in graph theory can be formulated in terms of graph equations. In this paper, we solved some graph equations of detour two-distance graphs, detour three-distance graphs, detour antipodal graphs involving with the line graphs.

7.
Sci Rep ; 12(1): 9165, 2022 06 02.
Article in English | MEDLINE | ID: mdl-35655078

ABSTRACT

Heat usage patterns, which are greatly affected by the users' behaviors, network performances, and control logic, are a crucial indicator of the effective and efficient management of district heating networks. The variations in the heat load can be daily or seasonal. The daily variations are primarily influenced by the customers' social behaviors, whereas the seasonal variations are mainly caused by the large temperature differences between the seasons over the year. Irregular heat load patterns can significantly raise costs due to pricey peak fuels and increased peak heat load capacities. The in-depth analyses of heat load profiles are regrettably quite rare and small-scale up until now. Therefore, this study offers a comprehensive investigation of a district heating network operation in order to exploit the major features of the heat usage patterns and discover the big factors that affect the heat load patterns. In addition, this study also provides detailed explanations of the features that can be considered the main drivers of the users' heat load demand. Finally, two primary daily heat usage patterns are extracted, which are exploited to efficiently train the prediction model.


Subject(s)
Body Temperature , Hot Temperature , Heating , Seasons
9.
Sensors (Basel) ; 22(7)2022 Apr 01.
Article in English | MEDLINE | ID: mdl-35408337

ABSTRACT

Due to the advantages of economics, safety, and efficiency, vision-based analysis techniques have recently gained conspicuous advancements, enabling them to be extensively applied for autonomous constructions. Although numerous studies regarding the defect inspection and condition assessment in underground sewer pipelines have presently emerged, we still lack a thorough and comprehensive survey of the latest developments. This survey presents a systematical taxonomy of diverse sewer inspection algorithms, which are sorted into three categories that include defect classification, defect detection, and defect segmentation. After reviewing the related sewer defect inspection studies for the past 22 years, the main research trends are organized and discussed in detail according to the proposed technical taxonomy. In addition, different datasets and the evaluation metrics used in the cited literature are described and explained. Furthermore, the performances of the state-of-the-art methods are reported from the aspects of processing accuracy and speed.


Subject(s)
Algorithms , Benchmarking
10.
Sensors (Basel) ; 21(12)2021 Jun 16.
Article in English | MEDLINE | ID: mdl-34208682

ABSTRACT

With the rapid rise of private vehicles around the world, License Plate Recognition (LPR) plays a vital role in supporting the government to manage vehicles effectively. However, an introduction of new types of license plate (LP) or slight changes in the LP format can break previous LPR systems, as they fail to recognize the LP. Moreover, the LPR system is extremely sensitive to the conditions of the surrounding environment. Thus, this paper introduces a novel deep learning-based Korean LPR system that can effectively deal with existing challenges. The main contributions of this study include (1) a robust LPR system with the integration of three pre-processing techniques (defogging, low-light enhancement, and super-resolution) that can effectively recognize the LP under various conditions, (2) the establishment of two original Korean LPR approaches for different scenarios, including whole license plate recognition (W-LPR) and single-character license plate recognition (SC-LPR), and (3) the introduction of two Korean LPR datasets (synthetic data and real data) involving a new type of LP introduced by the Korean government. Through several experiments, the proposed LPR framework achieved the highest recognition accuracy of 98.94%.


Subject(s)
Neural Networks, Computer , Republic of Korea
11.
Comput Intell Neurosci ; 2018: 9293437, 2018.
Article in English | MEDLINE | ID: mdl-29606960

ABSTRACT

The purpose of this paper is to evaluate food taste, smell, and characteristics from consumers' online reviews. Several studies in food sensory evaluation have been presented for consumer acceptance. However, these studies need taste descriptive word lexicon, and they are not suitable for analyzing large number of evaluators to predict consumer acceptance. In this paper, an automated text analysis method for food evaluation is presented to analyze and compare recently introduced two jjampong ramen types (mixed seafood noodles). To avoid building a sensory word lexicon, consumers' reviews are collected from SNS. Then, by training word embedding model with acquired reviews, words in the large amount of review text are converted into vectors. Based on these words represented as vectors, inference is performed to evaluate taste and smell of two jjampong ramen types. Finally, the reliability and merits of the proposed food evaluation method are confirmed by a comparison with the results from an actual consumer preference taste evaluation.


Subject(s)
Consumer Behavior/statistics & numerical data , Data Mining/methods , Pattern Recognition, Automated/methods , Social Media , Food Preferences , Humans , Online Systems , Public Opinion , Taste
SELECTION OF CITATIONS
SEARCH DETAIL
...