Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 14(3)2022 Jan 19.
Article in English | MEDLINE | ID: mdl-35160383

ABSTRACT

The purpose of this study is to prepare a resistive lossy material using conducting polymers for electromagnetic wave absorbers. This paper presents a conductive paste largely composed of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) with a polyurethane binder. The various secondary compounds are added in small amounts to an aqueous blended solution in order to enhance the electrical and mechanical properties of the conductive thin film. The synthesized conductive paste is characterized through electrical, chemical, and morphological analyses. The electrical conductivity of the thin film is measured using a four-point probe and surface profiler. The chemical and morphological changes are studied in various experiments using a Raman microscope, X-ray photoelectron spectroscopy, a scanning electron microscope, and an atomic force microscope. In order to verify the applicability of the synthesized conductive paste, which is composed of 70 wt% PEDOT:PSS, 30 wt% polyurethane, and secondary additives (DMAE 0.4 wt%, A-187 0.5 wt%, DMSO 7 wt%, Dynol 604 0.1 wt%, PUR 40 2.5 wt%), the Salisbury screen absorber is fabricated and evaluated in the X-band. According to the results, the absorber resonates at 9.7 GHz, the reflection loss is -38.6 dB, and the 90% absorption bandwidth is 3.4 GHz (8.2 to 11.6 GHz). Through this experiment, the applicability of the PEDOT:PSS-based conductive paste is sufficiently verified and it is found that excellent radar-absorbing performance can be realized.

SELECTION OF CITATIONS
SEARCH DETAIL
...