Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Animals (Basel) ; 13(18)2023 Sep 16.
Article in English | MEDLINE | ID: mdl-37760340

ABSTRACT

Climate change is a serious challenge to food production around the world. Sustainability and water efficiency are critical to a poultry industry faced with global production concerns including increased demands for high-quality, affordable animal protein and greater environmental pressures resulting from rising global temperatures, flock heat stress, and limits on water availability. To address these concerns, a commercial sprinkler system used in combination with a cool cell system was evaluated against a cool cell system alone for two summer flocks of heavy broilers at Mississippi State University to determine effects of sprinkler technology on cooling water usage, litter moisture, and in-house environments. Environmental data were calculated and recorded throughout the flocks. The combination house exhibited a 2.2 °C (4 °F) increase in daily maximum temperature, lower coincident relative humidity, and a 64% (62,039 L/flock) reduction in average cooling water usage over the cool cell-only house. Litter moisture for the combination house tended to be numerically lower but showed no significant difference at several time points between and across flocks. A combined sprinkler/cool cell system reduced cooling water use by 64% over two flocks compared to a cool cell alone system and decreased in-house relative humidity levels.

2.
PLoS One ; 16(12): e0260487, 2021.
Article in English | MEDLINE | ID: mdl-34910739

ABSTRACT

At the start of the COVID-19 pandemic, the Centers for Disease Control and Prevention (CDC) designed, manufactured, and distributed the CDC 2019-Novel Coronavirus (2019-nCoV) Real-Time RT-PCR Diagnostic Panel for SARS-CoV-2 detection. The diagnostic panel targeted three viral nucleocapsid gene loci (N1, N2, and N3 primers and probes) to maximize sensitivity and to provide redundancy for virus detection if mutations occurred. After the first distribution of the diagnostic panel, state public health laboratories reported fluorescent signal in the absence of viral template (false-positive reactivity) for the N3 component and to a lesser extent for N1. This report describes the findings of an internal investigation conducted by the CDC to identify the cause(s) of the N1 and N3 false-positive reactivity. For N1, results demonstrate that contamination with a synthetic template, that occurred while the "bulk" manufactured materials were located in a research lab for quality assessment, was the cause of false reactivity in the first lot. Base pairing between the 3' end of the N3 probe and the 3' end of the N3 reverse primer led to amplification of duplex and larger molecules resulting in false reactivity in the N3 assay component. We conclude that flaws in both assay design and handling of the "bulk" material, caused the problems with the first lot of the 2019-nCoV Real-Time RT-PCR Diagnostic Panel. In addition, within this study, we found that the age of the examined diagnostic panel reagents increases the frequency of false positive results for N3. We discuss these findings in the context of improvements to quality control, quality assurance, and assay validation practices that have since been improved at the CDC.


Subject(s)
COVID-19 , DNA Primers , False Positive Reactions , Humans , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2
3.
Virulence ; 12(1): 2659-2669, 2021 12.
Article in English | MEDLINE | ID: mdl-34672874

ABSTRACT

Enterotoxigenic Escherichia coli (ETEC) is a leading cause of diarrheal disease in developing nations where it accounts for a significant disease burden in children between the ages of 0 to 59 months. It is also the number one bacterial causative agent of traveler's diarrhea. ETEC infects hosts through the fecal-oral route and utilizes colonization factors (CF) to adhere within the small intestine. Over 25 CFs have been identified; 7 are considered major CFs and a vaccine targeting these is predicted to provide protection against up to 66% of ETEC associated disease. Coli Surface Antigen 6 (CS6) is a major CF and is associated with disease-causing ETEC isolates. Analysis of the CS6 operon sequence led to the identification of two regions of variability among clinical isolates which we predicted exert effects on CS6 transcript and protein expression. A total of 7 recombinant E. coli strains were engineered to encode the CS6 operon in wild-type, hybrid, and mutant configurations. Western blot analysis and RT-qPCR provided evidence to support the importance of an intergenic hairpin structure on CS6 expression. Our results reveal the significance of CS6 sequence selection regarding ETEC vaccine development and present novel information regarding CS6 sequence variation in WT ETEC strains.


Subject(s)
Antigens, Bacterial , Enterotoxigenic Escherichia coli , Escherichia coli Infections , Escherichia coli Proteins , Antigens, Bacterial/genetics , Antigens, Bacterial/metabolism , Diarrhea/microbiology , Enterotoxigenic Escherichia coli/genetics , Enterotoxins , Escherichia coli Infections/microbiology , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Operon , Travel
4.
Pathogens ; 10(9)2021 Aug 25.
Article in English | MEDLINE | ID: mdl-34578112

ABSTRACT

Shigella is a leading cause of bacillary dysentery worldwide, responsible for high death rates especially among children under five in low-middle income countries. Shigella sonnei prevails in high-income countries and is becoming prevalent in industrializing countries, where multi-drug resistant strains have emerged, as a significant public health concern. One strategy to combat drug resistance in S. sonnei is the development of effective vaccines. There is no licensed vaccine against Shigella, and development has been hindered by the lack of an effective small-animal model. In this work, we used human enteroids, for the first time, as a model system to evaluate a plasmid-stabilized S. sonnei live attenuated vaccine strain, CVD 1233-SP, and a multivalent derivative, CVD 1233-SP::CS2-CS3, which expresses antigens from enterotoxigenic Escherichia coli. The strains were also tested for immunogenicity and protective capacity in the guinea pig model, demonstrating their ability to elicit serum and mucosal antibody responses as well as protection against challenge with wild-type S. sonnei. These promising results highlight the utility of enteroids as an innovative preclinical model to evaluate Shigella vaccine candidates, constituting a significant advance for the development of preventative strategies against this important human pathogen.

5.
J Virol Methods ; 287: 114004, 2021 01.
Article in English | MEDLINE | ID: mdl-33098957

ABSTRACT

Zika virus (ZIKV) infection remains a public health concern necessitating demand for long-term virus production for diagnostic assays and R&D activities. Inactivated virus constitutes an important component of the Trioplex rRT-PCR assay and serological IgM assay (MAC-ELISA). The aim of our study is to establish standard methods of ZIKV inactivation while maintaining antigenicity and RNA integrity. We tested viral supernatants by four different inactivation methods: 1. Heat inactivation at 56 °C and 60 °C; 2. Gamma-Irradiation; 3. Chemical inactivation by Beta-propiolactone (BPL) and 4. Fast-acting commercial disinfecting agents. Effectivity was measured by cytopathic effect (CPE) and plaque assay. RNA stability and antigenicity were measured by RT-PCR and MAC-ELISA, respectively. Results: Heat inactivation: Low titer samples, incubated at 56 °C for 2 h, showed neither CPE or plaques compared to high titer supernatants that required 2.5 h. Inactivation occurred at 60 °C for 60 min with all virus titers. Gamma irradiation: Samples irradiated at ≥3 Mrad for low virus concentrations and ≥5Mrad for high virus titer completely inactivated virus. Chemical Inactivation: Neither CPE nor plaques were observed with ≥0.045 % BPL inactivation of ZIKV. Disinfectant: Treatment of viral supernatants with Micro-Chem Plus™, inactivated virus in 2 min, whereas, Ethanol (70 %) and STERIS Coverage® Spray TB inactivated the virus in 5 min.


Subject(s)
Zika Virus Infection , Zika Virus , Disinfection , Humans , Indicators and Reagents , Virus Inactivation , Zika Virus Infection/diagnosis
6.
J Appl Lab Med ; 5(2): 273-280, 2020 03 01.
Article in English | MEDLINE | ID: mdl-32445395

ABSTRACT

BACKGROUND: Irradiative sterilization of clinical specimens prior to chemical laboratory testing provides a way to not only sterilize pathogens and ensure laboratorian safety but also preserve sample volume and maintain compatibility with quantitative chemical diagnostic protocols. Since the compatibility of clinical biomarkers with gamma irradiation is not well characterized, a subset of diagnostic biomarkers ranging in molecular size, concentration, and clinical matrix was analyzed to determine recovery following gamma irradiation. METHODS: Sample irradiation of previously characterized quality control materials (QCs) at 5 Mrad was carried out at the Gamma Cell Irradiation Facility at the Centers for Disease Control and Prevention (CDC) in Atlanta, GA. Following irradiation, the QCs were analyzed alongside non-irradiated QCs to determine analyte recovery between dosed and control samples. RESULTS: Biomarkers for exposure to abrin, ricin, and organophosphorus nerve agents (OPNAs) were analyzed for their stability following gamma irradiation. The diagnostic biomarkers included adducts to butyrylcholinesterase, abrine, and ricinine, respectively, and were recovered at over 90% of their initial concentration. CONCLUSIONS: The results from this pilot study support the implementation of an irradiative sterilization protocol for possible mixed-exposure samples containing both chemical and biological threat agents (mixed CBTs). Furthermore, irradiative sterilization significantly reduces a laboratorian's risk of infection from exposure to an infectious agent without compromising chemical diagnostic testing integrity, particularly for diagnostic assays in which the chemical analyte has been shown to be fully conserved following a 5 Mrad irradiative dose.


Subject(s)
Biomarkers , Gamma Rays , Sterilization , Alkaloids/analysis , Alkaloids/chemistry , Biomarkers, Pharmacological/analysis , Biomarkers, Pharmacological/chemistry , Chemical Safety , Chromatography, High Pressure Liquid , Consumer Product Safety , Equipment Safety , Indole Alkaloids/analysis , Indole Alkaloids/chemistry , Pilot Projects , Pyridones/analysis , Pyridones/chemistry , Quality Control , Radiation Dosage , Sterilization/methods
7.
Biol Chem ; 387(7): 985-93, 2006 Jul.
Article in English | MEDLINE | ID: mdl-16913848

ABSTRACT

Penicillium marneffei is a dimorphic fungus native to Southeast Asia. Disease caused by this organism, until recently a very rare condition, has increased dramatically in parallel with the increase in the number of individuals in the region immunocompromised by AIDS and other conditions. While much research has been performed on the control of dimorphic switching in P. marneffei, there is a relative dearth of information regarding the proteinases secreted by this pathogen. Our laboratory has purified and characterized two proteinases produced by this organism in liquid culture and cloned the gene of a third. Both the recombinant enzyme expressed from the cloned gene and one of those purified from culture supernatants have been identified as members of the eqolisin family, a group of pepstatin-insensitive acid proteinases. The other enzyme purified from a culture supernatant is a serine proteinase with activity in the neutral pH range. These enzymes appear to be differentially expressed, depending on culture conditions.


Subject(s)
Penicillium/enzymology , Peptide Hydrolases/isolation & purification , Amino Acid Sequence , Base Sequence , Blotting, Western , Cloning, Molecular , DNA Primers , Electrophoresis, Polyacrylamide Gel , Molecular Sequence Data , Peptide Hydrolases/chemistry , Peptide Hydrolases/genetics , Peptide Hydrolases/metabolism , Sequence Homology, Amino Acid , Substrate Specificity
8.
J Bacteriol ; 187(1): 266-75, 2005 Jan.
Article in English | MEDLINE | ID: mdl-15601711

ABSTRACT

A previously identified gene sprE of Enterococcus faecalis strain OG1 was shown to encode an extracellular serine protease that appears to belong to the glutamyl endopeptidase I staphylococcal group. A single form of SprE with a molecular mass of 25 kDa and a pH optimum between 7.0 and 7.5 was isolated from culture supernatant of wild-type E. faecalis strain OG1RF (TX4002); this form was apparently generated by cleavage of the Ser-1-Leu1 and Arg230-Leu231 peptide bonds of the secreted zymogen. In contrast, the culture supernatant of the gelatinase-null mutant, TX5264, with a nonpolar deletion of gelE which encodes the E. faecalis gelatinase, was found to contain several forms of SprE proteolytically processed on both the N and C termini; in addition to a full-length zymogen and a truncated zymogen, three mature forms of the SprE proteinase, Leu1-Ala237, Ser-1-Glu227, and Leu1-Glu227, were identified. As with the V8 proteinase of Staphylococcus aureus, the closest homologue of SprE, all of the active forms cleaved specifically Glu-Xaa peptide bonds but with substantially different efficiencies, while none was able to hydrolyze peptide bonds with Asp in the P1 position. The most active of all these enzyme forms against several substrates, including human fibrinogen and beta-chain insulin, was the Ser-1-Glu227 (-1S-SprE) isolated from TX5264; -1S-SprE, in contrast to other forms of SprE, was unstable at 37 degrees C, apparently due to autodegradation. In conclusion, our results demonstrate that sprE encodes a highly specific serine-type glutamyl endopeptidase, the maturation of which is dependent on the presence of gelatinase. In the absence of gelatinase activity, the aberrant processing of pro-SprE results in the appearance of a "superactive" form of the enzyme, -1S-SprE.


Subject(s)
Enterococcus faecalis/enzymology , Isoenzymes/isolation & purification , Serine Endopeptidases/isolation & purification , Virulence Factors/isolation & purification , Amino Acid Sequence , Enterococcus faecalis/pathogenicity , Enzyme Stability , Insulin/metabolism , Isoenzymes/metabolism , Molecular Sequence Data , Serine Endopeptidases/metabolism , Virulence Factors/metabolism
9.
Biol Chem ; 385(6): 525-35, 2004 Jun.
Article in English | MEDLINE | ID: mdl-15255185

ABSTRACT

Staphylococcus epidermidis, a Gram-positive, coagulase-negative bacterium is a predominant inhabitant of human skin and mucous membranes. Recently, however, it has become one of the most important agents of hospital-acquired bacteriemia, as it has been found to be responsible for surgical wound infections developed in individuals with indwelling catheters or prosthetic devices, as well as in immunosupressed or neutropenic patients. Despite their medical significance, little is known about proteolytic enzymes of S. epidermidis and their possible contribution to the bacterium's pathogenicity; however, it is likely that they function as virulence factors in a manner similar to that proposed for the proteases of Staphylococcus aureus. Here we describe the purification of a cell wall-associated cysteine protease from S. epidermidis, its biochemical properties and specificity. A homology search using N-terminal sequence data revealed similarity to staphopain A (ScpA) and staphopain B (SspB), cysteine proteases from S. aureus. Moreover, the gene encoding S. epidermidis cysteine protease (Ecp) and a downstream gene coding for a putative inhibitor of the protease form an operon structure which resembles that of staphopain A in S. aureus. The active cysteine protease was detected on the bacterial cell surface as well as in the culture media and is apparently produced in a growth phase-dependent manner, with initial expression occurring in the mid-logarithmic phase. This enzyme, with elastinolytic properties, as well as the ability to cleave alpha1PI, fibrinogen and fibronectin, may possibly contribute to the invasiveness and pathogenic potential of S. epidermidis.


Subject(s)
Cell Wall/enzymology , Cysteine Endopeptidases/physiology , Elastin/metabolism , Staphylococcus epidermidis/enzymology , Staphylococcus epidermidis/growth & development , Amino Acid Sequence , Bacterial Proteins/drug effects , Bacterial Proteins/isolation & purification , Bacterial Proteins/physiology , Cysteine Endopeptidases/drug effects , Cysteine Endopeptidases/isolation & purification , Cysteine Proteinase Inhibitors/pharmacology , Enzyme Stability/drug effects , Enzyme Stability/physiology , Humans , Hydrogen-Ion Concentration , Molecular Sequence Data , Reducing Agents/pharmacology , Sequence Homology, Amino Acid , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...