Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Antibiotics (Basel) ; 9(6)2020 May 28.
Article in English | MEDLINE | ID: mdl-32481500

ABSTRACT

Bak-ri-hyang (Thymus quinquecostatus Celak.) is an important medicinal and aromatic plant in Korea. T. quinquecostatus population and is always mixed with other thyme cultivars during cultivation and marketing. Hence, this study aimed to determine the genetic variability and the essential oil composition of three Korean native thyme, T. quinquecostatus cultivars collected from the Wolchul, Jiri, and Odae mountains, in comparison with six commercial thyme cultivars (T. vulgaris), to distinguish Bak-ri-hyang from other thyme cultivars. The composition of essential oils obtained from nine individuals was analyzed by gas chromatography-mass spectrometry (GC-MS). The random amplified polymorphic DNA (RAPD) analysis was accomplished using 16 different primers. The GC-MS analysis revealed that Wolchul, creeping, golden, and orange cultivars belong to the geraniol chemotype. Whereas the Odae, lemon, and silver cultivars belong to the thymol chemotype. Further, linalool was the most abundant component in carpet and Jiri cultivars. The RAPD analysis demonstrated that all thyme cultivars showed characteristic RAPD patterns that allowed their identification. In total, 133 bands were obtained using 16 primers, and 124 bands were polymorphic, corresponding to 93.2% polymorphism. Cluster analysis of RAPD markers established the presence of clear separation from nine thyme cultivars. The highest dissimilarity and similarity coefficient of the RAPD markers were 0.58 and 0.98, respectively. According to the RAPD patterns, the nine thyme cultivars could be divided into two major clusters. Among three Korean cultivars, the Wolchul and Odae cultivars were placed into the same cluster, but they did not show identical clustering with their essential oil compositions. The findings of the present study suggest that RAPD analysis can be a useful tool for marker-assisted identification of T. quinquecostatus from other Thymus species.

2.
Plant Cell Environ ; 42(11): 3061-3076, 2019 11.
Article in English | MEDLINE | ID: mdl-31325169

ABSTRACT

Salinity is a deleterious abiotic stress factor that affects growth, productivity, and physiology of crop plants. Strategies for improving salinity tolerance in plants are critical for crop breeding programmes. Here, we characterized the rice (Oryza sativa) really interesting new gene (RING) H2-type E3 ligase, OsSIRH2-14 (previously named OsRFPH2-14), which plays a positive role in salinity tolerance by regulating salt-related proteins including an HKT-type Na+ transporter (OsHKT2;1). OsSIRH2-14 expression was induced in root and shoot tissues treated with NaCl. The OsSIRH2-14-EYFP fusion protein was predominately expressed in the cytoplasm, Golgi, and plasma membrane of rice protoplasts. In vitro pull-down assays and bimolecular fluorescence complementation assays revealed that OsSIRH2-14 interacts with salt-related proteins, including OsHKT2;1. OsSIRH2-14 E3 ligase regulates OsHKT2;1 via the 26S proteasome system under high NaCl concentrations but not under normal conditions. Compared with wild type plants, OsSIRH2-14-overexpressing rice plants showed significantly enhanced salinity tolerance and reduced Na+ accumulation in the aerial shoot and root tissues. These results suggest that the OsSIRH2-14 RING E3 ligase positively regulates the salinity stress response by modulating the stability of salt-related proteins.


Subject(s)
Cation Transport Proteins/metabolism , Oryza/genetics , Plant Proteins/metabolism , Proteasome Endopeptidase Complex/metabolism , Salt Tolerance/genetics , Sodium/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitin/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Cation Transport Proteins/genetics , Gene Expression , Gene Expression Regulation, Plant/drug effects , Gene Expression Regulation, Plant/genetics , Oryza/drug effects , Oryza/enzymology , Plant Proteins/genetics , Plant Roots/metabolism , Plants, Genetically Modified/metabolism , Protein Stability , Salt Stress/genetics , Salt Stress/physiology , Salt Tolerance/physiology , Sodium Chloride/pharmacology , Ubiquitin-Protein Ligases/genetics , Ubiquitination/drug effects , Ubiquitination/genetics , Up-Regulation
3.
Genes Genomics ; 40(7): 755-766, 2018 07.
Article in English | MEDLINE | ID: mdl-29934814

ABSTRACT

The root plays an important role during plant development and growth, i.e., the plant body maintenance, nutrient storage, absorption of water, oxygen and nutrient from the soil, and storage of water and carbohydrates, etc. The objective of this study was attempted to determine root-specific genes at the initial developmental stages of maize by using network-based transcriptome analysis. The raw data obtained using RNA-seq were filtered for quality control of the reads with the FASTQC tool, and the filtered reads were pre-proceed using the TRIMMOMATIC tool. The enriched BINs of the DEGs were detected using PageMan analysis with the ORA_FISHER statistical test, and genes were assigned to metabolic pathways by using the MapMan tool, which was also used for detecting transcription factors (TFs). For reconstruction of the co-expression network, we used the algorithm for the reconstruction of accurate cellular networks (ARACNE) in the R package, and then the reconstructed co-expression network was visualized using the Cytoscape tool. RNA-seq. was performed using maize shoots and roots at different developmental stages of root emergence (6-10 days after planting, VE) and 1 week after plant emergence (V2). A total of 1286 differentially expressed genes (DEGs) were detected in both tissues. Many DEGs involved in metabolic pathways exhibited altered mRNA levels between VE and V2. In addition, we observed gene expression changes for 113 transcription factors and found five enriched cis-regulatory elements in the 1-kb upstream regions of both DEGs. The network-based transcriptome analysis showed two modules as co-expressed gene clusters differentially expressed between the shoots and roots during plant development. The DEGs of one module exhibited gene expressional coherence in the maize root tips, suggesting that their functional relationships are associated with the initial developmental stage of the maize root. Finally, we confirmed reliable mRNA levels of the hub genes in the potential sub-network related to initial root development at the different developmental stages of VE, V2, and 2 weeks after plant emergence.


Subject(s)
Plant Roots/genetics , Transcriptome/genetics , Zea mays/genetics , Gene Expression Profiling , Gene Expression Regulation, Plant/genetics , Gene Regulatory Networks , Plant Proteins/genetics , Plant Roots/growth & development , Sequence Analysis, RNA , Transcription Factors/genetics , Zea mays/growth & development
4.
Front Plant Sci ; 8: 267, 2017.
Article in English | MEDLINE | ID: mdl-28298916

ABSTRACT

Flowering time is an important factor determining yield and seed quality in maize. A change in flowering time is a strategy used to survive abiotic stresses. Among abiotic stresses, drought can increase anthesis-silking intervals (ASI), resulting in negative effects on maize yield. We have analyzed the correlation between flowering time and drought stress using RNA-seq and bioinformatics tools. Our results identified a total of 619 genes and 126 transcripts whose expression was altered by drought stress in the maize B73 leaves under short-day condition. Among drought responsive genes, we also identified 20 genes involved in flowering times. Gene Ontology (GO) enrichment analysis was used to predict the functions of the drought-responsive genes and transcripts. GO categories related to flowering time included reproduction, flower development, pollen-pistil interaction, and post-embryonic development. Transcript levels of several genes that have previously been shown to affect flowering time, such as PRR37, transcription factor HY5, and CONSTANS, were significantly altered by drought conditions. Furthermore, we also identified several drought-responsive transcripts containing C2H2 zinc finger, CCCH, and NAC domains, which are frequently involved in transcriptional regulation and may thus have potential to alter gene expression programs to change maize flowering time. Overall, our results provide a genome-wide analysis of differentially expressed genes (DEGs), novel transcripts, and isoform variants expressed during the reproductive stage of maize plants subjected to drought stress and short-day condition. Further characterization of the drought-responsive transcripts identified in this study has the potential to advance our understanding of the mechanisms that regulate flowering time under drought stress.

5.
Appl Plant Sci ; 5(2)2017 Feb.
Article in English | MEDLINE | ID: mdl-28224059

ABSTRACT

PREMISE OF THE STUDY: Positional cloning in combination with phenotyping is a general approach to identify disease-resistance gene candidates in plants; however, it requires several time-consuming steps including population or fine mapping. Therefore, in the present study, we suggest a new combined strategy to improve the identification of disease-resistance gene candidates. METHODS AND RESULTS: Downy mildew (DM)-resistant maize was selected from five cultivars using a spreader row technique. Positional cloning and bioinformatics tools were used to identify the DM-resistance quantitative trait locus marker (bnlg1702) and 47 protein-coding gene annotations. Eventually, five DM-resistance gene candidates, including bZIP34, Bak1, and Ppr, were identified by quantitative reverse-transcription PCR (RT-PCR) without fine mapping of the bnlg1702 locus. CONCLUSIONS: The combined protocol with the spreader row technique, quantitative trait locus positional cloning, and quantitative RT-PCR was effective for identifying DM-resistance candidate genes. This cloning approach may be applied to other whole-genome-sequenced crops or resistance to other diseases.

6.
Physiol Plant ; 158(2): 168-79, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27118216

ABSTRACT

Ubiquitination-mediated protein degradation via Really Interesting New Gene (RING) E3 ligase plays an important role in plant responses to abiotic stress conditions. Many plant studies have found that RING proteins regulate the perception of various abiotic stresses and signal transduction. In this study, Oryza sativa salt-induced RING Finger Protein 1 (OsSIRP1) gene was selected randomly from 44 Oryza sativa RING Finger Proteins (OsRFPs) genes highly expressed in rice roots exposed to salinity stress. Transcript levels of OsSIRP1 in rice leaves after various stress treatments, including salt, heat, drought and hormone abscisic acid (ABA), were observed. Poly-ubiquitinated products of OsSIRP1 were investigated via an in vitro ubiquitination assay.35S:OsSIRP1-EYFP was distributed in the cytosol of untreated and salt-treated rice protoplasts. Heterogeneous overexpression of OsSIRP1 in Arabidopsis reduced tolerance for salinity stress during seed germination and root growth. Our findings indicate that OsSIRP1 acts as a negative regulator of salinity stress tolerance mediated by the ubiquitin 26S proteasome system.


Subject(s)
Genome, Plant/genetics , Oryza/physiology , Plant Growth Regulators/metabolism , Plant Proteins/metabolism , Sodium Chloride/pharmacology , Abscisic Acid/metabolism , Amino Acid Sequence , Arabidopsis/genetics , Arabidopsis/physiology , Droughts , Gene Expression Regulation, Plant , Oryza/cytology , Oryza/genetics , Phylogeny , Plant Leaves/cytology , Plant Leaves/genetics , Plant Leaves/physiology , Plant Proteins/genetics , Plant Roots/cytology , Plant Roots/genetics , Plant Roots/physiology , Proteasome Endopeptidase Complex/genetics , Proteasome Endopeptidase Complex/metabolism , RNA, Messenger/genetics , Salinity , Sequence Alignment , Stress, Physiological , Ubiquitination
7.
J Plant Physiol ; 171(17): 1645-53, 2014 Nov 01.
Article in English | MEDLINE | ID: mdl-25173451

ABSTRACT

Leucine-rich repeat (LRR) receptor-like kinase (RLK) proteins play key roles in a variety of biological pathways. In a previous study, we analyzed the members of the rice LRR-RLK gene family using in silico analysis. A total of 23 LRR-RLK genes were selected based on the expression patterns of a genome-wide dataset of microarrays. The Oryza sativa gamma-ray induced LRR-RLK1 (OsGIRL1) gene was highly induced by gamma irradiation. Therefore, we studied its expression pattern in response to various different abiotic and phytohormone treatments. OsGIRL1 was induced on exposure to abiotic stresses such as salt, osmotic, and heat, salicylic acid (SA), and abscisic acid (ABA), but exhibited downregulation in response to jasmonic acid (JA) treatment. The OsGIRL1 protein was clearly localized at the plasma membrane. The truncated proteins harboring juxtamembrane and kinase domains (or only harboring a kinase domain) exhibited strong autophosphorylation. The biological function of OsGIRL1 was investigated via heterologous overexpression of this gene in Arabidopsis plants subjected to gamma-ray irradiation, salt stress, osmotic stress, and heat stress. A hypersensitive response was observed in response to salt stress and heat stress, whereas a hyposensitive response was observed in response to gamma-ray treatment and osmotic stress. These results provide critical insights into the molecular functions of the rice LRR-RLK genes as receptors of external signals.


Subject(s)
Gamma Rays , Oryza/enzymology , Plant Growth Regulators/metabolism , Protein Kinases/genetics , Signal Transduction , Stress, Physiological , Abscisic Acid/metabolism , Arabidopsis/enzymology , Arabidopsis/genetics , Arabidopsis/physiology , Arabidopsis/radiation effects , Cyclopentanes/metabolism , Gene Expression Regulation, Plant , Genes, Reporter , Leucine-Rich Repeat Proteins , Oryza/genetics , Oryza/physiology , Oryza/radiation effects , Oxylipins/metabolism , Phosphorylation , Plant Leaves/enzymology , Plant Leaves/genetics , Plant Leaves/physiology , Plant Leaves/radiation effects , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified , Protein Kinases/metabolism , Protein Transport , Proteins , Salicylic Acid/metabolism , Seedlings/enzymology , Seedlings/genetics , Seedlings/physiology , Seedlings/radiation effects , Sodium Chloride/pharmacology
8.
New Phytol ; 202(4): 1223-1236, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24635769

ABSTRACT

Roots have both indeterminate and determinate developmental programs. The latter is preceded by the former. It is not well understood how the indeterminacy-to-determinacy switch (IDS) is regulated. We isolated a moots koom2 (mko2; 'short root' in Mayan) Arabidopsis thaliana mutant with determinate primary root growth and analyzed the root apical meristem (RAM) behavior using various marker lines. Deep sequencing and genetic and pharmacological complementation permitted the identification of a point mutation in the FOLYLPOLYGLUTAMATE SYNTHETASE1 (FPGS1) gene responsible for the mko2 phenotype. Wild-type FPGS1 is required to maintain the IDS in the 'off' state. When FPGS1 function is compromised, the IDS is turned on and the RAM becomes completely consumed. The polyglutamate-dependent pathway of the IDS involves activation of the quiescent center independently of auxin gradients and regulatory modules participating in RAM maintenance (WUSCHEL-RELATED HOMEOBOX5 (WOX5), PLETHORA, and SCARECROW (SCR)). The mko2 mutation causes drastic changes in folate metabolism and also affects lateral root primordium morphogenesis but not initiation. We identified a metabolism-dependent pathway involved in the IDS in roots. We suggest that the root IDS represents a specific developmental pathway that regulates RAM behaviour and is a different level of regulation in addition to RAM maintenance.


Subject(s)
Arabidopsis/genetics , Folic Acid/metabolism , Peptide Synthases/genetics , Arabidopsis/cytology , Arabidopsis/growth & development , Arabidopsis/metabolism , Meristem/cytology , Meristem/genetics , Meristem/growth & development , Meristem/metabolism , Peptide Synthases/metabolism , Plant Roots/cytology , Plant Roots/genetics , Plant Roots/growth & development , Plant Roots/metabolism , Plants, Genetically Modified , Point Mutation , Signal Transduction , Stem Cell Niche
9.
DNA Res ; 20(3): 299-314, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23571674

ABSTRACT

A large number of really interesting new gene (RING) E3 ligases contribute to the post-translational modification of target proteins during plant responses to environmental stresses. However, the physical interactome of RING E3 ligases in rice remains largely unknown. Here, we evaluated the expression patterns of 47 Oryza sativa RING finger protein (OsRFP) genes in response to abiotic stresses via semi-quantitative reverse transcription polymerase chain reaction (RT-PCR) and in silico analysis. Subsequently, molecular dissection of nine OsRFPs was performed by the examination of their E3 ubiquitin ligase activity, subcellular localization, and physical interaction with target proteins. Most of the OsRFPs examined possessed E3 ligase activity and showed diverse subcellular localization. Yeast two-hybrid analysis was then employed to construct a physical interaction map of seven OsRFPs with their 120 interacting proteins. The results indicated that these OsRFPs required dynamic translocation and partitioning for their cellular activation. Heterogeneous overexpression of each of the OsRFP genes in Arabidopsis suggested that they have functionally diverse responses to abiotic stresses, which may have been acquired during evolution. This comprehensive study provides insights into the biological functions of OsRFPs, which may be useful in understanding how rice plants adapt to unfavourable environmental conditions.


Subject(s)
Oryza/genetics , Plant Proteins/genetics , Stress, Physiological/genetics , Ubiquitin-Protein Ligases/genetics , Genes, Plant/genetics , Genetic Variation , Multigene Family , Oryza/enzymology , Plant Proteins/chemistry , Plant Proteins/metabolism , Protein Binding , Protein Structure, Tertiary , Ubiquitin-Protein Ligases/chemistry , Ubiquitin-Protein Ligases/metabolism
10.
Genetica ; 138(8): 843-52, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20532958

ABSTRACT

Previously, the wheat non-specific lipid transfer proteins (TaLTP), members of a small multigene family, were reported to evidence a complex pattern of expression regulation. In order to assess further the expression diversity of the TaLTP genes, we have attempted to evaluate their expression profiles in responses to abiotic stresses, using semi-quantitative RT-PCR. The expression profiles generated herein revealed that the TaLTP genes in group A evidenced highly similar responses against abiotic stresses, whereas differential expression patterns among genes in each group were also observed. A total of seven promoters were fused to a GUS reporter gene and the recombinants were introduced into Arabidopsis, while three promoters evidenced non-detectible GUS activity. The promoters of TaLTP1, TaLTP7, and TaLTP10 included in group A drove strong expressions during plant development with overlapping patterns, in large part, but also exhibited distinct expression pattern, thereby suggesting subfunctionalization processing over evolutionary time. However, only trace expression in cotyledons, young emerged leaves, and epidermal cell layers of flower ovaries was driven by the promoter of TaLTP3 of group B. These results indicate that their distinct physiological functions appear to be accomplished by a subfunctionalization process involving degenerative mutations in regulatory regions.


Subject(s)
Carrier Proteins/genetics , Gene Expression Regulation, Plant , Genes, Plant/genetics , Plant Proteins/genetics , Regulatory Sequences, Nucleic Acid/genetics , Triticum/genetics , Arabidopsis/genetics , Base Sequence , Evolution, Molecular , Plants, Genetically Modified , Promoter Regions, Genetic/genetics , Reverse Transcriptase Polymerase Chain Reaction , Stress, Physiological/genetics , Triticum/physiology
11.
Plant Mol Biol ; 72(4-5): 369-80, 2010 Mar.
Article in English | MEDLINE | ID: mdl-19957018

ABSTRACT

The proteins harboring RING finger motif(s) have been shown to mediate protein-protein interactions that are relevant to a variety of cellular processes. In an effort to elucidate the evolutionary dynamics of the rice RING finger protein family, we have attempted to determine their genomic locations, expression diversity, and co-expressed genes via in silico analysis and semi-quantitative RT-PCR. A total of 425 retrieved genes appear to be distributed over all 12 of the chromosomes of rice with different distributions, and are reflective of the evolutionary dynamics of the rice genome. A genome-wide dataset harboring 155 gene expression omnibus sample plates evidenced some degree of differential evolutionary fates between members of RING-H2 and RING-HC types. Additionally, responses to abiotic stresses, such as salinity and drought, demonstrated that some degree of expression diversity existed between members of the RING finger protein genes. Interestingly, we determined that one RING-H2 finger protein gene (Os04g51400) manifested striking differences in expression patterns in response to abiotic stresses between leaf and culm-node tissues, further revealing responses highly similar to the majority of randomly selected co-expressed genes. The gene network of genes co-expressed with Os04g51400 may suggest some role in the salt response of the gene. These findings may shed further light on the evolutionary dynamics and molecular functional diversity of these proteins in complex cellular regulations.


Subject(s)
Genes, Plant , Multigene Family , Oryza/genetics , Plant Proteins/genetics , RING Finger Domains/genetics , Amino Acid Sequence , Chromosome Mapping , Chromosomes, Plant/genetics , Evolution, Molecular , Gene Expression , Gene Regulatory Networks , Models, Genetic , Molecular Sequence Data , Oryza/metabolism , Phylogeny , Plant Proteins/classification , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Plant/genetics , RNA, Plant/metabolism
12.
Mol Genet Genomics ; 279(5): 481-97, 2008 May.
Article in English | MEDLINE | ID: mdl-18270740

ABSTRACT

Previously, the genes encoding non-specific lipid transfer proteins (nsLTPs) of the Poaceae family appear to evidence different genomic distribution and somewhat different shares of EST clones, which is suggestive of independent duplication(s) followed by functional diversity. To further evaluate the evolutionary fate of the Poaceae nsLTP genes, we have identified Ka/Ks values, conserved, mutated or lost cis-regulatory elements, responses to several elicitors, genome-wide expression profiles, and nsLTP gene-coexpression networks of both (or either) wheat and rice. The Ka/Ks values within each group and between groups appeared to be similar, but not identical, in both species. The conserved cis-regulatory elements, e.g. the RY repeat (CATGCA) element related to ABA regulation in group A, might be reflected in some degree of long-term conservation in transcriptional regulation post-dating speciation. In group A, wheat nsLTP genes, with the exception of TaLTP4, evidenced responses similar to those of plant elicitors; however, the rice nsLTP genes evidenced differences in expression profiles, even though the genes of both species have undergone purifying selection, thereby suggesting their independent functional diversity. The expression profiles of rice nsLTP genes with a microarray dataset of 155 gene expression omnibus sample (GSM) plates suggest that subfunctionalization is not the sole mechanism inherent to the evolutionary history of nsLTP genes but may, rather, function in concert with other mechanism(s). As inferred by the nsLTP gene-coexpression networks, the functional diversity of nsLTP genes appears not to be randomized, but rather to be specialized in the direction of specific biological processes over evolutionary time.


Subject(s)
Carrier Proteins/genetics , Evolution, Molecular , Gene Duplication , Genetic Variation , Poaceae/genetics , Cluster Analysis , Conserved Sequence , Gene Expression Profiling , Gene Expression Regulation, Plant , Genes, Plant , Genetic Speciation , Oligonucleotide Array Sequence Analysis , Oryza/genetics , Phylogeny , Triticum/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...