Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 13(13)2020 Jul 07.
Article in English | MEDLINE | ID: mdl-32645928

ABSTRACT

Using recyclable materials in asphalt pavement is a fundamental design approach not only for limiting the environmental impact of the construction industry, but also for reducing the overall costs of the road infrastructures. Over the past years, road agencies have developed different policies to incorporate various types of recyclable material into conventional asphalt mixtures. reclaimed asphalt pavement (RAP) is one of the most highly recycled construction materials. However, the aged RAP binder and its stiffer and brittle characteristics compared to the fresh binder may negatively affect the performance of the recycled mixture, especially when operating in cold climates. In this study, the low-temperature response of asphalt mixture prepared with single-recycled RAP (SRRAP) and double-recycled RAP (DRRAP), prepared in the laboratory, is experimentally investigated based on creep testing performed with the bending beam rheometer (BBR). Then, the data were analyzed based on three simple mathematical models to extract information on material behavior. Finally, a new indicator named thermal stress factor (TFS) on low-temperature response is proposed. Relatively poorer performance was observed from SRRAP mixture compared to the asphalt mixture prepared with virgin material. However, the low-temperature response between SRRAP and DRRAP did not present significant differences. The values of TFS support the experimental results and suggest the possibility of considering re-recycling technology for further research with the objective of a possible application in the asphalt pavement industry.

2.
Materials (Basel) ; 13(1)2020 Jan 04.
Article in English | MEDLINE | ID: mdl-31947999

ABSTRACT

In this paper, three different rheological models including a newly developed formulation based on the current Christensen Anderson and Marateanu (CAM) model, named sigmoidal CAM model (SCM), are used to estimate the evolution of roughness, rutting, and reflective cracking in a typical composite pavement structure currently widely adopted in South Korea. Three different asphalt mixtures were prepared and dynamic modulus tests were performed. Then, the mechanistic-empirical pavement design guide (MEPDG) was used for predicting the progression of the pavement distress and to estimate the effect of the three different models on such phenomena. It is found that the three different mathematical models provide lower and upper limits for roughness, rutting, and reflective cracking. While the CAM model may not be entirely reliable due to its inability in fitting the data in the high-temperature domain, SCM might result in moderately more conservative pavement design.

3.
Environ Sci Pollut Res Int ; 26(35): 35620-35628, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31342344

ABSTRACT

In this paper, the possibility of using different amounts of re-recycled (repeated recycled) Reclaimed Asphalt Pavement (RAP) in the asphalt mixture was experimentally investigated. First, a single virgin mixture was prepared and artificially aged to simulate the first generation of RAP to be used for designing the first generation of recycled mixtures. Next, the recycled mixtures were further aged to obtain a second generation of RAP to be mixed for preparing the second generation of recycled mixtures with and without the contribution of a rejuvenator. The fatigue behavior and low-temperature properties of all asphalt mixtures were experimentally investigated based on the cylindrical indirect tensile test (CIDT), Bending Beam Rheometer (BBR) mixture creep stiffness tests, and Semi-Circular Bending (SCB) fracture tests, respectively. Results indicate that re-recycled materials designed with and without rejuvenator show inferior fatigue behavior with respect to the first generation of recycled mixtures while exhibiting better performance than the virgin material. Meanwhile, poorer low-temperature creep properties were observed for the mixture prepared with recycled and re-recycled RAP. Fracture properties comparable with those of the virgin material were obtained only for re-recycled mixtures designed with rejuvenator. The present experimental work provides evidence on the possibility of using re-recycled RAP up to 40% when rejuvenators are included in the mix design.


Subject(s)
Construction Materials , Hydrocarbons , Recycling/methods
4.
Materials (Basel) ; 10(7)2017 Jul 03.
Article in English | MEDLINE | ID: mdl-28773100

ABSTRACT

In this paper, the possibility of improving the global response of asphalt materials for pavement applications through the use of hydrated lime and Electric Arc-Furnace Steel Slag (EAFSS) was investigated. For this purpose, a set of asphalt mortars was prepared by mixing two different asphalt binders with fine granite aggregate together with hydrated lime or EAFSS at three different percentages. Bending Beam Rheometer (BBR) creep tests and Dynamic Shear Rheometer (DSR) complex modulus tests were performed to evaluate the material response both at low and high temperature. Then, the rheological Huet model was fitted to the BBR creep results for estimating the impact of filler content on the model parameters. It was found that an addition of hydrated lime and EAFSS up to 10% and 5%, respectively, results in satisfactory low-temperature performance with a substantial improvement of the high-temperature behavior.

5.
Materials (Basel) ; 7(9): 6254-6280, 2014 Sep 02.
Article in English | MEDLINE | ID: mdl-28788190

ABSTRACT

The use of recycled materials in pavement construction has seen, over the years, a significant increase closely associated with substantial economic and environmental benefits. During the past decades, many transportation agencies have evaluated the effect of adding Reclaimed Asphalt Pavement (RAP), and, more recently, Recycled Asphalt Shingles (RAS) on the performance of asphalt pavement, while limits were proposed on the amount of recycled materials which can be used. In this paper, the effect of adding RAP and RAS on the microstructural and low temperature properties of asphalt mixtures is investigated using digital image processing (DIP) and modeling of rheological data obtained with the Bending Beam Rheometer (BBR). Detailed information on the internal microstructure of asphalt mixtures is acquired based on digital images of small beam specimens and numerical estimations of spatial correlation functions. It is found that RAP increases the autocorrelation length (ACL) of the spatial distribution of aggregates, asphalt mastic and air voids phases, while an opposite trend is observed when RAS is included. Analogical and semi empirical models are used to back-calculate binder creep stiffness from mixture experimental data. Differences between back-calculated results and experimental data suggest limited or partial blending between new and aged binder.

SELECTION OF CITATIONS
SEARCH DETAIL
...