Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Cancers (Basel) ; 16(9)2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38730620

ABSTRACT

To develop imaging biomarkers for tumors aggressiveness, our previous optical redox imaging (ORI) studies of the reduced nicotinamide adenine dinucleotide (NADH) and oxidized flavoproteins (Fp, containing flavin adenine dinucleotide, i.e., FAD) in tumor xenografts of human melanoma associated the high optical redox ratio (ORR = Fp/(Fp + NADH)) and its heterogeneity to the high invasive/metastatic potential, without having reported quantitative results for NADH and Fp. Here, we implemented a calibration procedure to facilitate imaging the nominal concentrations of tissue NADH and Fp in the mouse xenografts of two human melanoma lines, an indolent less metastatic A375P and a more metastatic C8161. Images of the redox indices (NADH, Fp, ORR) revealed the existence of more oxidized areas (OAs) and more reduced areas (RAs) within individual tumors. ORR was found to be higher and NADH lower in C8161 compared to that of A375P xenografts, both globally for the whole tumors and locally in OAs. The ORR in the OA can differentiate xenografts with a higher statistical significance than the global averaged ORR. H&E staining of the tumors indicated that the redox differences we identified were more likely due to intrinsically different cell metabolism, rather than variations in cell density.

2.
Adv Exp Med Biol ; 977: 51-57, 2017.
Article in English | MEDLINE | ID: mdl-28685427

ABSTRACT

Aging is the greatest risk factor for many diseases. Intracellular concentrations of nicotinamide adenine dinucleotide (NAD+) and the NAD+-coupled redox state have been proposed to moderate many aging-related processes, yet the specific mechanisms remain unclear. The concentration of NAD+ falls with age in skeletal muscle, yet there is no consensus on whether aging will increase or decrease the redox potential of NAD+/NADH. Oxidized flavin groups (Fp) (e.g. FAD, i.e., flavin adenine dinucleotide, contained in flavoproteins) and NADH are intrinsic fluorescent indicators of oxidation and reduction status of tissue, respectively. The redox ratio, i.e., the ratio of Fp to NADH, may be a surrogate indicator of the NAD+/NADH redox potential. In this study we used the Chance redox scanner (NADH/Fp fluorescence imaging at low temperature) to investigate the effect of aging on the redox state of mitochondria in skeletal muscles. The results showed that there are borderline significant differences in nominal concentrations of Fp and NADH, but not in the redox ratio s when comparing 3.5-month and 13-month old muscles of mice (n = 6). It may be necessary to increase the number of muscle samples and study mice of more advanced age.


Subject(s)
Aging/metabolism , Muscles/metabolism , NAD/metabolism , Optical Imaging/methods , Animals , Flavoproteins/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Mitochondria/metabolism , Oxidation-Reduction
3.
J Innov Opt Health Sci ; 7(2): 1350045, 2014 Mar 01.
Article in English | MEDLINE | ID: mdl-24917891

ABSTRACT

The heart requires continuous ATP availability that is generated in the mitochondria. Although studies using the cell culture and perfused organ models have been carried out to investigate the biochemistry in the mitochondria in response to a change in substrate supply, mitochondrial bioenergetics of heart under normal feed or fasting conditions has not been studied at the tissue level with a sub-millimeter spatial resolution either in vivo or ex vivo. Oxidation of many food-derived metabolites to generate ATP in the mitochondria is realized through the NADH/NAD+ couple acting as a central electron carrier. We employed the Chance redox scanner - the low-temperature fluorescence scanner to image the three-dimensional (3D) spatial distribution of the mitochondrial redox states in heart tissues of rats under normal feeding or an overnight starvation for 14.5 h. Multiple consecutive sections of each heart were imaged to map three redox indices, i.e., NADH, oxidized flavoproteins (Fp, including flavin adenine dinucleotide (FAD)) and the redox ratio NADH/Fp. The imaging results revealed the micro-heterogeneity and the spatial distribution of these redox indices. The quantitative analysis showed that in the fasted hearts the standard deviation of both NADH and Fp, i.e., SD_NADH and SD_Fp, significantly decreased with a p value of 0.032 and 0.045, respectively, indicating that the hearts become relatively more homogeneous after fasting. The fasted hearts contained 28.6% less NADH (p = 0.038). No significant change in Fp was found (p = 0.4). The NADH/Fp ratio decreased with a marginal p value (0.076). The decreased NADH in the fasted hearts is consistent with the cardiac cells' reliance of fatty acids consumption for energy metabolism when glucose becomes scarce. The experimental observation of NADH decrease induced by dietary restriction in the heart at tissue level has not been reported to our best knowledge. The Chance redox scanner demonstrated the feasibility of 3D imaging of the mitochondrial redox state in the heart and provides a useful tool to study heart metabolism and function under normal, dietary-change and pathological conditions at tissue level.

4.
Mol Imaging Biol ; 16(5): 670-9, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24811957

ABSTRACT

PURPOSE: Tissue redox state is an important mediator of various biological processes in health and diseases such as cancer. Previously, we discovered that the mitochondrial redox state of ex vivo tissues detected by redox scanning (an optical imaging method) revealed interesting tumor redox state heterogeneity that could differentiate tumor aggressiveness. Because the noninvasive chemical exchange saturation transfer (CEST) MRI can probe the proton transfer and generate contrasts from endogenous metabolites, we aim to investigate if the in vivo CEST contrast is sensitive to proton transfer of the redox reactions so as to reveal the tissue redox states in breast cancer animal models. PROCEDURES: CEST MRI has been employed to characterize tumor metabolic heterogeneity and correlated with the redox states measured by the redox scanning in two human breast cancer mouse xenograft models, MDA-MB-231 and MCF-7. The possible biological mechanism on the correlation between the two imaging modalities was further investigated by phantom studies where the reductants and the oxidants of the representative redox reactions were measured. RESULTS: The CEST contrast is found linearly correlated with NADH concentration and the NADH redox ratio with high statistical significance, where NADH is the reduced form of nicotinamide adenine dinucleotide. The phantom studies showed that the reductants of the redox reactions have more CEST contrast than the corresponding oxidants, indicating that higher CEST effect corresponds to the more reduced redox state. CONCLUSIONS: This preliminary study suggests that CEST MRI, once calibrated, might provide a novel noninvasive imaging surrogate for the tissue redox state and a possible diagnostic biomarker for breast cancer in the clinic.


Subject(s)
Breast Neoplasms/diagnosis , Breast Neoplasms/metabolism , Magnetic Resonance Imaging/methods , Animals , Female , Humans , MCF-7 Cells , Mice, Nude , NAD/metabolism , Oxidation-Reduction
5.
J Innov Opt Health Sci ; 6(3)2013 Jul.
Article in English | MEDLINE | ID: mdl-26207147

ABSTRACT

The mitochondrial redox state and its heterogeneity of colon cancer at tissue level have not been previously reported. Nor has how p53 regulates mitochondrial respiration been measured at (deep) tissue level, presumably due to the unavailability of the technology that has sufficient spatial resolution and tissue penetration depth. Our prior work demonstrated that the mitochondrial redox state and its intratumor heterogeneity is associated with cancer aggressiveness in human melanoma and breast cancer in mouse models, with the more metastatic tumors exhibiting localized regions of more oxidized redox state. Using the Chance redox scanner with an in-plane spatial resolution of 200 µm, we imaged the mitochondrial redox state of the wild-type p53 colon tumors (HCT116 p53 wt) and the p53-deleted colon tumors (HCT116 p53-/-) by collecting the fluorescence signals of nicotinamide adenine dinucleotide (NADH) and oxidized flavoproteins [Fp, including flavin adenine dinucleotide (FAD)] from the mouse xenografts snap-frozen at low temperature. Our results show that: (1) both tumor lines have significant degree of intratumor heterogeneity of the redox state, typically exhibiting a distinct bi-modal distribution that either correlates with the spatial core-rim pattern or the "hot/cold" oxidation-reduction patches; (2) the p53-/- group is significantly more heterogeneous in the mitochondrial redox state and has a more oxidized tumor core compared to the p53 wt group when the tumor sizes of the two groups are matched; (3) the tumor size dependence of the redox indices (such as Fp and Fp redox ratio) is significant in the p53-/- group with the larger ones being more oxidized and more heterogeneous in their redox state, particularly more oxidized in the tumor central regions; (4) the H&E staining images of tumor sections grossly correlate with the redox images. The present work is the first to reveal at the submillimeter scale the intratumor heterogeneity pattern of the mitochondrial redox state in colon cancer and the first to indicate that at tissue level the mitochondrial redox state is p53 dependent. The findings should assist in our understanding on colon cancer pathology and developing new imaging biomarkers for clinical applications.

6.
Proc Natl Acad Sci U S A ; 106(16): 6608-13, 2009 Apr 21.
Article in English | MEDLINE | ID: mdl-19366661

ABSTRACT

Noninvasive or minimally invasive prediction of tumor metastatic potential would facilitate individualized cancer management. Studies were performed on a panel of human melanoma xenografts that spanned the full range of metastatic potential measured by an in vivo lung colony assay and an in vitro membrane invasion culture system. Three imaging methods potentially transferable to the clinic [dynamic contrast-enhanced (DCE) MRI, T(1(rho))-MRI, and low-temperature fluorescence imaging (measurable on biopsy specimens)] distinguished between relatively less metastatic and more metastatic human melanoma xenografts in nude mice. DCE-MRI, analyzed with the shutter-speed relaxometric algorithm and using an arterial input function simultaneously measured in the left ventricle of the mouse heart, yielded a blood transfer rate constant, K(trans), that measures vascular perfusion/permeability. K(trans) was significantly higher in the core of the least metastatic melanoma (A375P) than in the core of the most metastatic melanoma (C8161). C8161 melanoma had more blood vascular structures but fewer functional blood vessels than A375P melanoma. The A375P melanoma exhibited mean T(1(rho)) values that were significantly higher than those of C8161 melanoma. Measurements of T(1) and T(2) relaxation times did not differ significantly between these 2 melanomas. The mitochondrial redox ratio, Fp/(Fp + NADH), where Fp and NADH are the fluorescences of oxidized flavoproteins and reduced pyridine nucleotides, respectively, varied linearly with the in vitro invasive potential of the 5 melanoma cell lines (A375P, A375M, A375P10, A375P5, and C8161). This study shows that a harsh microenvironment may promote melanoma metastasis and provides potential biomarkers of metastatic potential.


Subject(s)
Biomarkers, Tumor/metabolism , Diagnostic Imaging , Magnetic Resonance Imaging , Melanoma/metabolism , Melanoma/pathology , Animals , Cell Line, Tumor , Contrast Media , Humans , Mice , Mitochondria/metabolism , Neoplasm Metastasis , Oxidation-Reduction , Xenograft Model Antitumor Assays
7.
Adv Exp Med Biol ; 599: 67-78, 2007.
Article in English | MEDLINE | ID: mdl-17727249

ABSTRACT

Accurate prediction of tumor metastatic potential would be helpful in treatment planning and in the design of agents that modify the tumor phenotype. We report that three methods that are potentially transferable to the clinic--dynamic contrast enhanced MRI (DCE MRI), T(1rho)-weighted imaging and low temperature fluorescence imaging (that could be performed on biopsy specimens)--distinguished between relatively indolent (A375P) and aggressive (C8161) metastatic human melanoma xenografts in nude mice, whereas T1 and T2 relaxation time measurements did not. DCE MRI data analyzed by the BOLus Enhanced Relaxation Overview (BOLERO) method in conjunction with concurrent measurements of the arterial input function yielded a blood transfer rate constant (Ktrans) which measures perfusion/permeability, that was significantly higher in the core of the indolent tumor than in the core of the aggressive tumor. Histological staining indicated that aggressive tumors had more blood vascular structure but fewer functional vascular structure than indolent tumors. Indolent tumors exhibited T(1rho), values that were significantly higher than those of aggressive tumors at spin-locking frequencies >500 Hz. The mitochondrial redox ratio, Fp/(Fp+NADH), where Fp and NADH are the fluorescence of oxidized flavoproteins and reduced pyridine nucleotides, respectively, of aggressive tumors was much higher (more oxidized) than that of indolent tumors and often showed a bimodal distribution with an oxidized core and a reduced rim. These differences observed between these two types of tumors, one indolent and one aggressive, if generalizable, would be very valuable in predicting human melanoma metastatic potential.


Subject(s)
Magnetic Resonance Imaging/methods , Melanoma/pathology , Neoplasm Metastasis , Animals , Cell Line, Tumor , Humans , Male , Mice , Mice, Nude , Neoplasm Transplantation , Oxidation-Reduction , Predictive Value of Tests , Transplantation, Heterologous
SELECTION OF CITATIONS
SEARCH DETAIL
...