Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Foods ; 12(16)2023 Aug 09.
Article in English | MEDLINE | ID: mdl-37628000

ABSTRACT

The development of efficient methods for evaluating pesticide residues is essential in order to ensure the safety and quality of agricultural products since the Republic of Korea implemented the Positive List System (PLS). The objective of this research was to establish a method for the simultaneous analysis of 322 pesticide residues in fruits and vegetables (such as coffee, potato, corn, and chili pepper), using the quick, easy, cheap, effective, rugged, and safe (QuEChERS) approach in combination with gas chromatography-tandem mass spectrometry (GC-MS/MS). This study introduces a robust, high-throughput GC-MS/MS method for screening the target pesticide residues in agricultural products, achieving the PLS criterion of 0.01 mg/kg LOQ. Despite some compounds not aligning with the CODEX recovery guideline, sufficient reproducibility was confirmed, attesting to the method's applicability in qualitative analyses. A health risk assessment conducted using estimated daily intake/acceptable daily intake ratios indicated low risks associated with product consumption (<0.035391%), thereby confirming their safety. This efficient method holds significant implications for the safe distribution of agricultural products, including during import inspections.

2.
Biomater Res ; 27(1): 14, 2023 Feb 17.
Article in English | MEDLINE | ID: mdl-36800989

ABSTRACT

BACKGROUND: The wound healing process is a complex cascade of physiological events, which are vulnerable to both our body status and external factors and whose impairment could lead to chronic wounds or wound healing impediments. Conventional wound healing materials are widely used in clinical management, however, they do not usually prevent wounds from being infected by bacteria or viruses. Therefore, simultaneous wound status monitoring and prevention of microbial infection are required to promote healing in clinical wound management. METHODS: Basic amino acid-modified surfaces were fabricated in a water-based process via a peptide coupling reaction. Specimens were analyzed and characterized by X-ray photoelectron spectroscopy, Kelvin probe force microscopy, atomic force microscopy, contact angle, and molecular electrostatic potential via Gaussian 09. Antimicrobial and biofilm inhibition tests were conducted on Escherichia coli and Staphylococcus epidermidis. Biocompatibility was determined through cytotoxicity tests on human epithelial keratinocytes and human dermal fibroblasts. Wound healing efficacy was confirmed by mouse wound healing and cell staining tests. Workability of the pH sensor on basic amino acid-modified surfaces was evaluated on normal human skin and Staphylococcus epidermidis suspension, and in vivo conditions. RESULTS: Basic amino acids (lysine and arginine) have pH-dependent zwitterionic functional groups. The basic amino acid-modified surfaces had antifouling and antimicrobial properties similar to those of cationic antimicrobial peptides because zwitterionic functional groups have intrinsic cationic amphiphilic characteristics. Compared with untreated polyimide and modified anionic acid (leucine), basic amino acid-modified polyimide surfaces displayed excellent bactericidal, antifouling (reduction ~ 99.6%) and biofilm inhibition performance. The basic amino acid-modified polyimide surfaces also exhibited wound healing efficacy and excellent biocompatibility, confirmed by cytotoxicity and ICR mouse wound healing tests. The basic amino acid-modified surface-based pH monitoring sensor was workable (sensitivity 20 mV pH-1) under various pH and bacterial contamination conditions. CONCLUSION: Here, we developed a biocompatible and pH-monitorable wound healing dressing with antimicrobial activity via basic amino acid-mediated surface modification, creating cationic amphiphilic surfaces. Basic amino acid-modified polyimide is promising for monitoring wounds, protecting them from microbial infection, and promoting their healing. Our findings are expected to contribute to wound management and could be expanded to various wearable healthcare devices for clinical, biomedical, and healthcare applications.

3.
Colloids Surf B Biointerfaces ; 211: 112314, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35033790

ABSTRACT

To prevent infections associated with biomedical catheters, various antimicrobial coatings have been investigated. However, those materials do not provide consistent antibacterial effects or biocompatibility, generally, due to degradation of the coating materials, in vivo. Additionally, biomedical catheters must have low surface friction to reduce tribological damage. In this study, we developed an antifouling surface composed of biocompatible amino acids (leucine, taurine, and aspartic acid) on polyimide, via modification using a series of facile immersion steps with waterborne reactions. The naturally derived amino acid could be formed highly biostable amide bonds on the polyimide surface like peptides. The amino acid-modified surface formed a water layer with antifouling performance through the hydrophilic properties of amino acids. Amino acid-mediated modification reduced adhesion up to 84.45% and 94.81% against Escherichia coli and Staphylococcus epidermidis, respectively, and exhibited an excellent prevention to adhesion against the proteins, albumin and fibrinogen. Evaluation of the surface friction of the catheter revealed a dramatic reduction in the tribological force after amino acid modification on polyimide that of 0.81 N to aspartic acid of 0.44 N. These results clearly demonstrate a reduced occurrence of infections, thrombi and tribological damage following the relatively facile surface modification of catheters. The proposed modification method can be used in a continuous manufacturing process via using the same time of modification steps for the easy producing the product. Moreover, the method uses biocompatible naturally derived materials and can be applied to medical equipment that requires biocompatibility and biofunctionality with polyimide surfaces.


Subject(s)
Biofouling , Amino Acids , Anti-Bacterial Agents/chemistry , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Biofouling/prevention & control , Coated Materials, Biocompatible/chemistry , Coated Materials, Biocompatible/pharmacology , Escherichia coli , Surface Properties
4.
J Nanosci Nanotechnol ; 15(7): 5314-7, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26373131

ABSTRACT

Pd/C catalysts were prepared by ion exchange in aqueous solution. Physical dispersion methods including sonication, high share mixer and stirrer were used for though high dispersion of carbon. The physical properties of the prepared Pd/C particles were investigated by BET, XRD, and FE-TEM. The dispersion of Pd nanoparticles on carbon was measured on the basis of CO adsorption capacity using a pulse technique. FE-TEM micrographs showed that Pd nano particles possessed a spherical morphology with a narrow size distribution, with particles sizes ranging from 2-25 nm. The Pd particles prepared using sonication and high share mixer are well dispersed compared to the stirrer method. In addition, metal dispersions as calculated by CO uptake were 11.3, 20.4, and 25.0% for the stirrer, sonication and high share mixer methods, respectively.

5.
J Nanosci Nanotechnol ; 15(1): 656-9, 2015 Jan.
Article in English | MEDLINE | ID: mdl-26328420

ABSTRACT

Cu-Zn-Al catalysts were prepared using microwave-assisted process and co-precipitation methods. The prepared catalysts were characterized by XRD, BET, XPS and TPD of ammonia and their catalytic activity for the hydrogenolysis of glycerol to propylene glycol was also examined. The XRD patterns of Cu/Zn/Al mixed catalysts show CuO and ZnO crystalline phase regardless of preparation method. The highest glycerol hydrogenolysis conversion is obtained with the catalyst having a Cu/Zn/Al ratio of 2:2:1. Hydrogen pre-reduction of catalysts significantly enhanced both glycerol conversions and selectivity to propylene glycol. The glycerol conversion increased with an increase of reaction temperature. However, the selectivity to propylene glycol increased with an increase of temperature, and then declined to 30.5% at 523 K.


Subject(s)
Glycerol/chemistry , Metals, Heavy/chemistry , Nanostructures/chemistry , Propylene Glycol/chemistry , Catalysis , Chemistry Techniques, Synthetic , Hot Temperature , Hydrogen , Microwaves , Particle Size , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...