Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
bioRxiv ; 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-37333322

ABSTRACT

Cell identification is an important yet difficult process in data analysis of biological images. Previously, we developed an automated cell identification method called CRF_ID and demonstrated its high performance in C. elegans whole-brain images (Chaudhary et al, 2021). However, because the method was optimized for whole-brain imaging, comparable performance could not be guaranteed for application in commonly used C. elegans multi-cell images that display a subpopulation of cells. Here, we present an advance CRF_ID 2.0 that expands the generalizability of the method to multi-cell imaging beyond whole-brain imaging. To illustrate the application of the advance, we show the characterization of CRF_ID 2.0 in multi-cell imaging and cell-specific gene expression analysis in C. elegans. This work demonstrates that high accuracy automated cell annotation in multi-cell imaging can expedite cell identification and reduce its subjectivity in C. elegans and potentially other biological images of various origins.

2.
G3 (Bethesda) ; 13(10)2023 09 30.
Article in English | MEDLINE | ID: mdl-37565483

ABSTRACT

In living organisms, changes in calcium flux are integral to many different cellular functions and are especially critical for the activity of neurons and myocytes. Genetically encoded calcium indicators (GECIs) have been popular tools for reporting changes in calcium levels in vivo. In particular, GCaMPs, derived from GFP, are the most widely used GECIs and have become an invaluable toolkit for neurophysiological studies. Recently, new variants of GCaMP, which offer a greater variety of temporal dynamics and improved brightness, have been developed. However, these variants are not readily available to the Caenorhabditis elegans research community. This work reports a set of GCaMP6 and jGCaMP7 reporters optimized for C. elegans studies. Our toolkit provides reporters with improved dynamic range, varied kinetics, and targeted subcellular localizations. Besides optimized routine uses, this set of reporters is also well suited for studies requiring fast imaging speeds and low magnification or low-cost platforms.


Subject(s)
Caenorhabditis elegans , Calcium , Animals , Caenorhabditis elegans/genetics , Neurons/physiology , Signal Transduction
3.
bioRxiv ; 2023 Mar 08.
Article in English | MEDLINE | ID: mdl-36945463

ABSTRACT

In living organisms, changes in calcium flux are integral to many different cellular functions and are especially critical for the activity of neurons and myocytes. Genetically encoded calcium indicators (GECIs) have been popular tools for reporting changes in calcium levels in vivo . In particular, GCaMP, derived from GFP, are the most widely used GECIs and have become an invaluable toolkit for neurophysiological studies. Recently, new variants of GCaMP, which offer a greater variety of temporal dynamics and improved brightness, have been developed. However, these variants are not readily available to the Caenorhabditis elegans research community. This work reports a set of GCaMP6 and jGCaMP7 reporters optimized for C. elegans studies. Our toolkit provides reporters with improved dynamic range, varied kinetics, and targeted subcellular localizations. Besides optimized routine uses, this set of reporters are also well-suited for studies requiring fast imaging speeds and low magnification or low-cost platforms.

4.
Nat Commun ; 13(1): 5165, 2022 09 02.
Article in English | MEDLINE | ID: mdl-36056020

ABSTRACT

Volumetric functional imaging is widely used for recording neuron activities in vivo, but there exist tradeoffs between the quality of the extracted calcium traces, imaging speed, and laser power. While deep-learning methods have recently been applied to denoise images, their applications to downstream analyses, such as recovering high-SNR calcium traces, have been limited. Further, these methods require temporally-sequential pre-registered data acquired at ultrafast rates. Here, we demonstrate a supervised deep-denoising method to circumvent these tradeoffs for several applications, including whole-brain imaging, large-field-of-view imaging in freely moving animals, and recovering complex neurite structures in C. elegans. Our framework has 30× smaller memory footprint, and is fast in training and inference (50-70 ms); it is highly accurate and generalizable, and further, trained with only small, non-temporally-sequential, independently-acquired training datasets (∼500 pairs of images). We envision that the framework will enable faster and long-term imaging experiments necessary to study neuronal mechanisms of many behaviors.


Subject(s)
Deep Learning , Animals , Caenorhabditis elegans , Calcium , Diagnostic Imaging , Image Processing, Computer-Assisted , Signal-To-Noise Ratio
SELECTION OF CITATIONS
SEARCH DETAIL