Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 95
Filter
1.
Front Neurosci ; 13: 1015, 2019.
Article in English | MEDLINE | ID: mdl-31607853

ABSTRACT

The antidepressant fluoxetine (FLX), generally the first line of pharmacological treatment in adolescents and pregnant women with affective disorders, is an emerging endocrine disruptor that is also released to the environment through sewage. Recently, we demonstrated that FLX exposure during the first 6 days of life in zebrafish (ZF; Danio rerio) induced a male-specific reduction in the exploratory behavior in the adult ZF that was linked to a reduction in cortisol production that persisted across three generations. Here we investigated sex differences in the behavioral and stress responses following FLX (0.54 and 54 µg⋅L-1) exposure during two periods of sexual development in ZF; early (0-15 days post-fertilization, dpf) and late (15-42 dpf). Our findings revealed that the stress response in females was reduced compared to that of males independent of the treatment. We also found that FLX reduced total body cortisol levels in the adult ZF regardless of sex and window of exposure. The hypocortisol phenotype of our FLX-treated fish was associated with behavioral alterations in the adult fish, which depended on the window of exposure; males were more sensitive to FLX during early development whereas females were affected during late development. A sexually dimorphic behavioral response induced by the low cortisol phenotype was observed in the FLX-treated ZF; females had higher exploratory activity whereas the males had reduced behavior. In conclusion, FLX results in sex- and window of exposure-specific effects on the behavioral activities in adult ZF. These findings highlight the importance of sex differences and timing on the long-term effects of antidepressant treatments. Knowledge of the sex-specific effects of antidepressants and the importance of early life exposure to chemical stressors may help us understand the impact of highly prescribed drugs such as FLX on the fetus from FLX-treated pregnant women as well as aquatic species in environments receiving sewage effluents.

2.
Biochemistry ; 58(41): 4183-4194, 2019 10 15.
Article in English | MEDLINE | ID: mdl-31566355

ABSTRACT

Cellular retinoic acid-binding protein 2 (CRABP2) delivers all-trans retinoic acid (atRA) to retinoic acid receptors (RARs), allowing for the activation of specific gene transcription. The structural similarities between free and atRA-bound CRABP2 raise the questions of how atRA binding occurs and how the atRA:CRABP2 complex is recognized by downstream binding partners. Thus, to gain insights into these questions, we conducted a detailed atRA-CRABP2 interaction study using nuclear magnetic resonance spectroscopy. The data showed that free CRABP2 displays widespread intermediate-time scale dynamics that is effectively suppressed upon atRA binding. This effect is mirrored by the fast-time scale dynamics of CRABP2. Unexpectedly, CRABP2 rigidification in response to atRA binding leads to the stabilization of a homodimerization interface, which encompasses residues located on helix α2 and the ßC-ßD loop as well as residues on strands ßI-ßA and the ßH-ßI loop. Critically, this rigidification also affects CRABP2's nuclear localization signal and RAR-binding motif, suggesting that the loss of conformational entropy upon atRA binding may be the key for the diverse cellular functions of CRABP2.


Subject(s)
Protein Multimerization , Receptors, Retinoic Acid/chemistry , Receptors, Retinoic Acid/metabolism , Tretinoin/chemistry , Tretinoin/metabolism , Cell Nucleus/metabolism , Crystallization , Entropy , Escherichia coli/genetics , Escherichia coli/metabolism , Humans , Hydrophobic and Hydrophilic Interactions , Kinetics , Ligands , Magnetic Resonance Spectroscopy , Protein Binding , Protein Structure, Secondary , Receptors, Retinoic Acid/genetics
3.
ACS Chem Biol ; 14(12): 2672-2682, 2019 12 20.
Article in English | MEDLINE | ID: mdl-31633908

ABSTRACT

The Phosphoprotein Phosphatase Calcineurin (CN, PP2B, PP3) recognizes and binds to two short linear motifs (SLiMs), PxIxIT and LxVP, in its regulators and substrates. These interactions enable CN function in many key biological processes. The identification of SLiMs is difficult because of their short, degenerate sequence and often low binding affinity. Here we combine Structure Based Shape Complementarity (SBSC) analysis and proteome-wide affinity purification-mass spectrometry to identify PxIxIT and LxVP containing CN interactors to expand and thereby redefine the LxVP motif. We find that the new πφ-LxVx primary sequence defines an ensemble of binding competent confirmations and thus the binding on-rate, making it difficult to predict the LxVP binding strength from its sequence. Our analysis confirms existing and, more importantly, identifies novel CN interactors, substrates, and thus biological functions of CN.


Subject(s)
Calcineurin/drug effects , Calcineurin/metabolism , Humans , Mass Spectrometry/methods , Protein Transport , Proteome , Substrate Specificity
4.
Proc Natl Acad Sci U S A ; 116(41): 20472-20481, 2019 10 08.
Article in English | MEDLINE | ID: mdl-31548429

ABSTRACT

The metalloenzyme protein phosphatase 1 (PP1), which is responsible for ≥50% of all dephosphorylation reactions, is regulated by scores of regulatory proteins, including the highly conserved SDS22 protein. SDS22 has numerous diverse functions, surprisingly acting as both a PP1 inhibitor and as an activator. Here, we integrate cellular, biophysical, and crystallographic studies to address this conundrum. We discovered that SDS22 selectively binds a unique conformation of PP1 that contains a single metal (M2) at its active site, i.e., SDS22 traps metal-deficient inactive PP1. Furthermore, we showed that SDS22 dissociation is accompanied by a second metal (M1) being loaded into PP1, as free metal cannot dissociate the complex and M1-deficient mutants remain constitutively trapped by SDS22. Together, our findings reveal that M1 metal loading and loss are essential for PP1 regulation in cells, which has broad implications for PP1 maturation, activity, and holoenzyme subunit exchange.


Subject(s)
Metals/metabolism , Nuclear Proteins/metabolism , Phosphoprotein Phosphatases/metabolism , Protein Phosphatase 1/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Amino Acid Sequence , Catalytic Domain , Metals/chemistry , Models, Molecular , Nuclear Proteins/chemistry , Phosphoprotein Phosphatases/chemistry , Phosphorylation , Protein Conformation , Protein Phosphatase 1/chemistry , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/growth & development , Saccharomyces cerevisiae Proteins/chemistry
5.
Toxicol Appl Pharmacol ; 382: 114742, 2019 11 01.
Article in English | MEDLINE | ID: mdl-31476325

ABSTRACT

Fluoxetine (FLX), the active ingredient in well-known therapeutic drugs such as Prozac, is highly prescribed worldwide to treat affective disorders even among pregnant women and adolescents. Given that FLX readily crosses the placenta, a fetus from a treated pregnant woman is potentially at risk from unintended effects of the chemical. Moreover, FLX reaches aquatic ecosystems at biologically active levels through sewage release, so fish may also be inadvertently affected. We previously demonstrated that FLX exposure to environmentally- (Low FLX Lineage; LFL) and human- (High FLX Lineage; HFL) relevant concentrations during the first 6 days of life in zebrafish (ZF; Danio rerio) reduced cortisol levels in the adults (F0), an effect that persisted across 3 consecutive unexposed generations (F1 to F3). Here, we show that the transcriptional profile of selected genes in the steroidogenesis pathway in the F0 whole-larvae varied in magnitude and direction in both FLX lineages, despite the same attenuated cortisol phenotype induced by both concentrations. We also observed an up-regulation in the transcript levels of some steroidogenic-related genes and a down-regulation of a gene involved in the inactivation of cortisol in the F3 HFL larvae. These findings on the transcript levels of the selected genes in the larvae from F0 and F3 suggest that specific coping mechanism(s) are activated in descendants to attempt to counteract the disruptive effects of FLX. Our data are cause for concern, given the increasing prescription rates of FLX and other antidepressants, and the potential long-term negative impacts on humans and aquatic organisms.


Subject(s)
Fluoxetine/toxicity , Gene Expression Regulation, Developmental , Hydrocortisone/metabolism , Larva/metabolism , Stress, Psychological/chemically induced , Stress, Psychological/metabolism , Animals , Antidepressive Agents, Second-Generation/toxicity , Female , Hydrocortisone/genetics , Larva/drug effects , Larva/genetics , Male , Pregnancy , Random Allocation , Selective Serotonin Reuptake Inhibitors/toxicity , Stress, Psychological/genetics , Water Pollutants, Chemical/toxicity , Zebrafish
6.
Endocrinology ; 160(9): 2137-2142, 2019 09 01.
Article in English | MEDLINE | ID: mdl-31305910

ABSTRACT

Owing to the prevalence of depression during childbearing, mothers can be prescribed multiple antidepressants; however, little is known about the risk and consequences to the offspring or subsequent generations. Fluoxetine (FLX) is usually the first-line of pharmacological treatment for affective disorders in pregnant women, with venlafaxine (VEN) used as secondary treatment. Given that FLX and VEN readily cross the placenta, a fetus from a treated pregnant woman is potentially at risk of the endocrine disruptive effects of these chemicals. Pharmaceutical agents, including FLX and VEN, reach aquatic ecosystems through sewage release; thus, fish could also be inadvertently affected. We report the results from a 6-day FLX exposure during early zebrafish development to an environmentally relevant level (0.54 µg/L in water) and a concentration detected in the cord blood of FLX-treated pregnant women (54 µg/L in water). The FLX exposure reduced the stress response (arithmetic difference between the stress-induced and unstressed whole-body cortisol levels) in the adult female and male zebrafish, an effect that persisted for four generations. To model the possibility of a second antidepressant exposure, filial generation 4 was exposed to VEN (5 µg/L). We found that FLX exposure sensitized these descendants to VEN. VEN treatment further suppressed cortisol production in females and decreased spawning rates in adult pairs. This is an important demonstration that in an animal model, a brief ancestral exposure of great-great-grandparents to the selective serotonin reuptake inhibitor FLX will shape the physiological responses of future generations to the serotonin and norepinephrine reuptake inhibitor VEN.


Subject(s)
Fluoxetine/pharmacology , Hydrocortisone/biosynthesis , Selective Serotonin Reuptake Inhibitors/pharmacology , Venlafaxine Hydrochloride/pharmacology , Zebrafish/physiology , Animals , Female , Male , Maternal Exposure/adverse effects
7.
Chem Res Toxicol ; 32(8): 1491-1503, 2019 08 19.
Article in English | MEDLINE | ID: mdl-31251591

ABSTRACT

Quantum dots (QDs) are engineered nanoparticles (NPs) of semiconductor structure that possess unique optical and electronic properties and are widely used in biomedical applications; however, their risks are not entirely understood. This study investigated the tissue distribution and toxic effects of cadmium telluride quantum dots (CdTe-QDs) in male BALB/c mice for up to 1 week after single-dose intravenous injections. CdTe-QDs were detected in the blood, lung, heart, liver, spleen, kidney, testis and brain. Most CdTe-QDs accumulated in the liver, followed by the spleen and kidney. At high doses, exposure to CdTe-QDs resulted in mild dehydration, lethargy, ruffled fur, hunched posture, and body weight loss. Histological analysis of the tissues, upon highest dose exposures, revealed hepatic hemorrhage and necrotic areas in the spleen. The sera of mice treated with high doses of CdTe-QDs showed significant increases in alanine aminotransferase (ALT), aspartate aminotransferase (AST), and total bilirubin levels, as well as a reduction in albumin. CdTe-QD exposure also led to a reduced number of platelets and elevated total white blood cell counts, including monocytes and neutrophils, serum amyloid A, and several pro-inflammatory cytokines. These results demonstrated that the liver is the main target of CdTe-QDs and that exposure to CdTe-QDs leads to hepatic and splenic injury, as well as systemic effects, in mice. By contrast, cadmium chloride (CdCl2), at an equivalent concentration of cadmium, appeared to have a different pharmacokinetic pattern from that of CdTe-QDs, having minimal effects on the aforementioned parameters, suggesting that cadmium alone cannot fully explain the toxicity of CdTe-QDs.


Subject(s)
Cadmium Compounds/pharmacokinetics , Nanoparticles/chemistry , Quantum Dots/chemistry , Tellurium/pharmacokinetics , Alanine Transaminase/chemistry , Alanine Transaminase/metabolism , Albumins/chemistry , Albumins/metabolism , Animals , Aspartate Aminotransferases/chemistry , Aspartate Aminotransferases/metabolism , Bilirubin/blood , Cadmium Chloride/administration & dosage , Cadmium Chloride/metabolism , Cadmium Chloride/pharmacokinetics , Cadmium Compounds/administration & dosage , Cadmium Compounds/metabolism , Injections, Intravenous , Male , Mice , Mice, Inbred BALB C , Nanoparticles/metabolism , Quantum Dots/metabolism , Tellurium/administration & dosage , Tellurium/metabolism , Tissue Distribution
8.
Proc Natl Acad Sci U S A ; 115(52): E12435-E12442, 2018 12 26.
Article in English | MEDLINE | ID: mdl-30530669

ABSTRACT

The global prevalence of depression is high during childbearing. Due to the associated risks to the mother and baby, the selective serotonin reuptake inhibitor fluoxetine (FLX) is often the first line of treatment. Given that FLX readily crosses the placenta, a fetus may be susceptible to the disruptive effects of FLX during this highly plastic stage of development. Here, we demonstrate that a 6-day FLX exposure to a fetus-relevant concentration at a critical developmental stage suppresses cortisol levels in the adult zebrafish (F0). This effect persists for three consecutive generations in the unexposed descendants (F1 to F3) without diminution and is more pronounced in males. We also show that the in vivo cortisol response of the interrenal (fish "adrenal") to an i.p. injection of adrenocorticotropic hormone was also reduced in the males from the F0 and F3 FLX lineages. Transcriptomic profiling of the whole kidney containing the interrenal cells revealed that early FLX exposure significantly modified numerous pathways closely associated with cortisol synthesis in the male adults from the F0 and F3 generations. We also show that the low cortisol levels are linked to significantly reduced exploratory behaviors in adult males from the F0 to F2 FLX lineages. This may be a cause for concern given the high prescription rates of FLX to pregnant women and the potential long-term negative impacts on humans exposed to these therapeutic drugs.


Subject(s)
Fluoxetine/adverse effects , Hydrocortisone/metabolism , Animals , Antidepressive Agents/pharmacology , Behavior, Animal/drug effects , Depressive Disorder , Family Characteristics , Female , Fluoxetine/pharmacology , Male , Maternal Exposure/adverse effects , Maternal-Fetal Exchange/drug effects , Pregnancy , Selective Serotonin Reuptake Inhibitors/pharmacology , Stress, Psychological , Zebrafish/metabolism , Zebrafish/physiology , Zebrafish Proteins/metabolism
9.
J Biol Chem ; 293(48): 18574-18584, 2018 11 30.
Article in English | MEDLINE | ID: mdl-30355734

ABSTRACT

The final steps of cell-wall biosynthesis in bacteria are carried out by penicillin-binding proteins (PBPs), whose transpeptidase domains form the cross-links in peptidoglycan chains that define the bacterial cell wall. These enzymes are the targets of ß-lactam antibiotics, as their inhibition reduces the structural integrity of the cell wall. Bacterial resistance to antibiotics is a rapidly growing concern; however, the structural underpinnings of PBP-derived antibiotic resistance are poorly understood. PBP4 and PBP5 are low-affinity, class B transpeptidases that confer antibiotic resistance to Enterococcus faecalis and Enterococcus faecium, respectively. Here, we report the crystal structures of PBP4 (1.8 Å) and PBP5 (2.7 Å) in their apo and acyl-enzyme complexes with the ß-lactams benzylpenicillin, imipenem, and ceftaroline. We found that, although these three ß-lactams adopt geometries similar to those observed in other class B PBP structures, there are small, but significant, differences that likely decrease antibiotic efficacy. Further, we also discovered that the N-terminal domain extensions in this class of PBPs undergo large rigid-body rotations without impacting the structure of the catalytic transpeptidase domain. Together, our findings are defining the subtle functional and structural differences in the Enterococcus PBPs that allow them to support transpeptidase activity while also conferring bacterial resistance to antibiotics that function as substrate mimics.


Subject(s)
Bacterial Proteins/chemistry , Enterococcus faecalis/metabolism , Enterococcus faecium/metabolism , Penicillin-Binding Proteins/chemistry , Protein Isoforms/chemistry , beta-Lactam Resistance , Acylation , Bacterial Proteins/genetics , Bacterial Proteins/isolation & purification , Bacterial Proteins/metabolism , Carbapenems/pharmacology , Catalytic Domain , Cephalosporins/pharmacology , Enterococcus faecalis/drug effects , Enterococcus faecium/drug effects , Microbial Sensitivity Tests , Penicillin-Binding Proteins/genetics , Penicillin-Binding Proteins/isolation & purification , Penicillin-Binding Proteins/metabolism , Penicillins/metabolism , Protein Conformation , Protein Domains , Protein Isoforms/genetics , Protein Isoforms/isolation & purification , beta-Lactam Resistance/genetics
10.
J Biol Chem ; 293(43): 16791-16802, 2018 10 26.
Article in English | MEDLINE | ID: mdl-30206122

ABSTRACT

The type I cGMP-dependent protein kinase (PKG I) is an essential regulator of vascular tone. It has been demonstrated that the type Iα isoform can be constitutively activated by oxidizing conditions. However, the amino acid residues implicated in this phenomenon are not fully elucidated. To investigate the molecular basis for this mechanism, we studied the effects of oxidation using recombinant WT, truncated, and mutant constructs of PKG I. Using an in vitro assay, we observed that oxidation with hydrogen peroxide (H2O2) resulted in constitutive, cGMP-independent activation of PKG Iα. PKG Iα C42S and a truncation construct that does not contain Cys-42 (Δ53) were both constitutively activated by H2O2 In contrast, oxidation of PKG Iα C117S maintained its cGMP-dependent activation characteristics, although oxidized PKG Iα C195S did not. To corroborate these results, we also tested the effects of our constructs on the PKG Iα-specific substrate, the large conductance potassium channel (KCa 1.1). Application of WT PKG Iα activated by either cGMP or H2O2 increased the open probabilities of the channel. Neither cGMP nor H2O2 activation of PKG Iα C42S significantly increased channel open probabilities. Moreover, cGMP-stimulated PKG Iα C117S increased KCa 1.1 activity, but this effect was not observed under oxidizing conditions. Finally, we observed that PKG Iα C42S caused channel flickers, indicating dramatically altered KCa 1.1 channel characteristics compared with channels exposed to WT PKG Iα. Cumulatively, these results indicate that constitutive activation of PKG Iα proceeds through oxidation of Cys-117 and further suggest that the formation of a sulfur acid is necessary for this phenotype.


Subject(s)
Cyclic GMP-Dependent Protein Kinase Type I/metabolism , Cyclic GMP/metabolism , Cysteine/metabolism , Amino Acid Sequence , Animals , Cattle , Cyclic GMP-Dependent Protein Kinase Type I/chemistry , Cysteine/chemistry , Models, Molecular , Nitric Oxide/metabolism , Oxidation-Reduction , Phosphorylation , Protein Conformation , Sequence Homology
11.
mBio ; 9(2)2018 04 03.
Article in English | MEDLINE | ID: mdl-29615500

ABSTRACT

Enterococcus faecalis strains resistant to penicillin and ampicillin are rare and have been associated with increases in quantities of low-affinity penicillin-binding protein 4 (PBP4) or with amino acid substitutions in PBP4. We report an E. faecalis strain (LS4828) isolated from a prosthetic knee joint that was subjected to long-term exposure to aminopenicillins. Subsequent cultures yielded E. faecalis with MICs of penicillins and carbapenems higher than those for wild-type strain E. faecalis JH2-2. Sequence analysis of the pbp4 gene of LS4828 compared to that of JH2-2 revealed two point mutations with amino acid substitutions (V223I, A617T) and deletion of an adenine from the region upstream of the predicted pbp4 -35 promoter sequence (UP region). Purified PBP4 from LS4828 exhibited less affinity for Bocillin FL than did PBP4 from JH2-2, which was recapitulated by purified PBP4 containing only the A617T mutation. Differential scanning fluorimetry studies showed that the LS4828 and A617T variants are destabilized compared to wild-type PBP4. Further, reverse transcription-PCR indicated increased transcription of pbp4 in LS4828 and Western blot analysis with polyclonal PBP4 antibody revealed greater quantities of PBP4 in LS4828 than in JH2-2 lysates and membrane preparations. Placing the promoter regions from LS4828 or JH2-2 upstream of a green fluorescent protein reporter gene confirmed that the adenine deletion was associated with increased transcription. Together, these data suggest that the reduced susceptibility to ß-lactam antibiotics observed in E. faecalis LS4828 results from a combination of both increased expression and remodeling of the active site, resulting in reduced affinity for penicillins and carbapenems.IMPORTANCEEnterococcus faecalis is an important cause of community-acquired and nosocomial infections and creates therapeutic dilemmas because of its frequent resistance to several classes of antibiotics. We report an E. faecalis strain with decreased ampicillin and imipenem susceptibility isolated after prolonged courses of aminopenicillin therapy for a prosthetic joint infection. Its reduced susceptibility is attributable to a combination of increased quantities of low-affinity PBP4 and an amino acid substitution in proximity to the active site that destabilizes the protein. Our findings provide a cautionary tale for clinicians who elect to "suppress" infections in prosthetic joints and offer novel insights into the interaction of ß-lactam antibiotics with low-affinity PBP4. These insights will help inform future efforts to develop therapeutics capable of inhibiting clinical enterococcal strains.


Subject(s)
Ampicillin/pharmacology , Anti-Bacterial Agents/pharmacology , Enterococcus faecalis/drug effects , Mutant Proteins/metabolism , Penicillin-Binding Proteins/metabolism , beta-Lactam Resistance , Amino Acid Substitution , Enterococcus faecalis/genetics , Enterococcus faecalis/isolation & purification , Gene Expression Profiling , Gram-Positive Bacterial Infections/microbiology , Humans , Microbial Sensitivity Tests , Mutant Proteins/genetics , Mutation, Missense , Penicillin-Binding Proteins/genetics , Point Mutation , Promoter Regions, Genetic , Prosthesis-Related Infections/microbiology , Sequence Analysis, DNA , Serial Passage
12.
J Biol Chem ; 293(21): 7916-7929, 2018 05 25.
Article in English | MEDLINE | ID: mdl-29602907

ABSTRACT

The type I cGMP-dependent protein kinases (PKG I) serve essential physiological functions, including smooth muscle relaxation, cardiac remodeling, and platelet aggregation. These enzymes form homodimers through their N-terminal dimerization domains, a feature implicated in regulating their cooperative activation. Previous investigations into the activation mechanisms of PKG I isoforms have been largely influenced by structures of the cAMP-dependent protein kinase (PKA). Here, we examined PKG Iα activation by cGMP and cAMP by engineering a monomeric form that lacks N-terminal residues 1-53 (Δ53). We found that the construct exists as a monomer as assessed by whole-protein MS, size-exclusion chromatography, and small-angle X-ray scattering (SAXS). Reconstruction of the SAXS 3D envelope indicates that Δ53 has a similar shape to the heterodimeric RIα-C complex of PKA. Moreover, we found that the Δ53 construct is autoinhibited in its cGMP-free state and can bind to and be activated by cGMP in a manner similar to full-length PKG Iα as assessed by surface plasmon resonance (SPR) spectroscopy. However, we found that the Δ53 variant does not exhibit cooperative activation, and its cyclic nucleotide selectivity is diminished. These findings support a model in which, despite structural similarities, PKG Iα activation is distinct from that of PKA, and its cooperativity is driven by in trans interactions between protomers.


Subject(s)
Cyclic GMP-Dependent Protein Kinase Type I/antagonists & inhibitors , Cyclic GMP-Dependent Protein Kinase Type I/metabolism , Cyclic GMP/metabolism , Protein Multimerization , Amino Acid Sequence , Animals , Cattle , Crystallography, X-Ray , Enzyme Activation , Humans , Mice , Models, Molecular , Phosphorylation , Protein Binding , Rats , Scattering, Small Angle , Sequence Homology
13.
PLoS One ; 13(3): e0193111, 2018.
Article in English | MEDLINE | ID: mdl-29554091

ABSTRACT

Engineered nanomaterials (ENMs) are increasingly incorporated into a variety of commercial applications and consumer products; however, ENMs may possess cytotoxic properties due to their small size. This study assessed the effects of two commonly used ENMs, zinc oxide nanoparticles (ZnONPs) and silver nanoparticles (AgNPs), in the model eukaryote Saccharomyces cerevisiae. A collection of ≈4600 S. cerevisiae deletion mutant strains was used to deduce the genes, whose absence makes S. cerevisiae more prone to the cytotoxic effects of ZnONPs or AgNPs. We demonstrate that S. cerevisiae strains that lack genes involved in transmembrane and membrane transport, cellular ion homeostasis, and cell wall organization or biogenesis exhibited the highest sensitivity to ZnONPs. In contrast, strains that lack genes involved in transcription and RNA processing, cellular respiration, and endocytosis and vesicular transport exhibited the highest sensitivity to AgNPs. Secondary assays confirmed that ZnONPs affected cell wall function and integrity, whereas AgNPs exposure decreased transcription, reduced endocytosis, and led to a dysfunctional electron transport system. This study supports the use of S. cerevisiae Gene Deletion Array as an effective high-throughput technique to determine cellular targets of ENM toxicity.


Subject(s)
Antifungal Agents/pharmacology , Cytotoxins/pharmacology , Metal Nanoparticles , Saccharomyces cerevisiae , Silver/pharmacology , Zinc Oxide/pharmacology , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Species Specificity
14.
Mar Environ Res ; 137: 158-168, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29576394

ABSTRACT

This study provides the characterization and tissue distribution of a ß2-AR in the female European eel during silvering, aiming to better understand the adrenergic system involvement in this critical maturation event. A putative ß2-AR (ADRB2) mRNA was cloned and sequenced. Amino acid residues and motifs important for ligand binding are generally conserved across fish and between fish and mammals, although the occurrence of some sequence variabilities may explain the noted peculiarities of eel AR interaction with pharmacological ligands. The tissue distribution of the ADRB2 gene product was analyzed in five tissues of the eel at different silvering stages and compared with that of the ADRA1 mRNA encoding an α1-AR subtype. On the whole, data suggested that relative ADRA1/ADRB2 tissue expression across silvering is part of the preparatory (molecular) adjustments required to face changes in habitats and migration efforts.


Subject(s)
Anguilla/physiology , Receptors, Adrenergic/metabolism , Amino Acid Sequence , Animals , Female , Protein Precursors , Silver , Tissue Distribution
16.
Article in English | MEDLINE | ID: mdl-28919473

ABSTRACT

The liver is a key metabolic organ contributing significantly to both lipid and cholesterol homeostasis in vertebrates. This study examines whether the human pharmaceutical atorvastatin (ATV), which is designed to lower cholesterol biosynthesis, could disrupt lipid dynamics in fish. The study investigates the effects of ATV at a physiologically relevant exposure regimen (concentration and duration) on gene transcripts and the biosynthesis of cholesterol and other lipid and non-lipid molecules in primary rainbow trout hepatocytes. Trout hepatocytes exposed to ATV increased the transcript abundance of genes involved in lipid metabolism (HMGCR1, LDLR, PPARα, PPARγ, and SREBP1) and xenobiotic metabolism (CYP3A27), and reduced cholesterol synthesis. This study demonstrates that lipid metabolism in trout hepatocytes is sensitive to the effects of ATV, and changes in gene expression occur within 3-6h after exposure.


Subject(s)
Atorvastatin/pharmacology , Cholesterol/metabolism , Fish Proteins/biosynthesis , Gene Expression Regulation/drug effects , Hepatocytes/metabolism , Lipid Metabolism/drug effects , Oncorhynchus mykiss/metabolism , Animals
17.
Environ Toxicol Pharmacol ; 52: 150-160, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28414942

ABSTRACT

3-Hydroxy-3-methylglutaryl-CoA reductase (HMGCR) is the rate-limiting enzyme of the mevalonic acid pathway and is required for cholesterol biosynthesis and the synthesis of Coenzyme Q10 (CoQ10). Statins inhibit HMGCR, thus inhibiting the downstream products of this pathway including the biosynthesis of decaprenyl-pyrophosphate that is critical for the synthesis of Coenzyme Q10 (CoQ10). We show that zebrafish (Danio rerio) larvae treated in tank water with Atorvastatin (ATV; Lipitor) exhibited movement alterations and reduced whole body tissue metabolism. The ATV-inhibition of HMGCR function altered transcript abundance of muscle atrophy markers (atrogen-1, murf) and the mitochondrial biogenesis marker (pgc-1α). Furthermore, ATV-induced reduction in larval response to tactile stimuli was reversed with treatment of CoQ10. Together, the implication of our results contributes to the understanding of the mechanisms of action of the statin-induced damage in this model fish species.


Subject(s)
Atorvastatin/toxicity , Hydroxymethylglutaryl-CoA Reductase Inhibitors/toxicity , Muscular Diseases/chemically induced , Protective Agents/pharmacology , Ubiquinone/analogs & derivatives , Animals , F-Box Proteins/genetics , Larva , Locomotion/drug effects , Muscle Proteins/genetics , Muscular Diseases/genetics , RNA, Messenger/metabolism , Transcription Factors/genetics , Ubiquinone/pharmacology , Zebrafish , Zebrafish Proteins/genetics
18.
Antibiotics (Basel) ; 6(1)2017 Feb 05.
Article in English | MEDLINE | ID: mdl-28165431

ABSTRACT

(1) Background: We assessed the effect of moxifloxacin on heart rate, and reviewed the heart rate effects of other antibiotics; (2) Methods: A total of 335 normal volunteers had 12-lead electrocardiograms recorded at multiple time points before and during treatment with moxifloxacin and with placebo in seven consecutive, thorough QT studies of crossover design; (3) Results: The average baseline heart rate across the seven studies was 61.5 bpm. The heart rate after moxifloxacin dosing was analyzed at five time points shared by all seven studies (hours 1, 2, 3, 12 and 24). The maximum mean heart rate (HR) increase for the seven studies combined was 2.4 bpm (95% CI 1.6, 3.3) at hour 2. The range of mean maximum increases among the seven studies was 2.1 to 4.3 bpm. For the seven studies combined, the increase was statistically significant at all but the 24 h time point. The maximum observed individual increase in HR was 36 bpm and the mean maximum increase was 30 ± 4.1 bpm by time point and 8 ± 6.9 bpm by subject. Many antibiotics increase HR, some several-fold more than moxifloxacin. However, clinicians and clinical investigators give little attention to this potential adverse effect in the medical literature; (4) Conclusions: The observed moxifloxacin-induced increase in HR is large enough to be clinically relevant, and it is a potentially important confounder in thorough QT studies using moxifloxacin as an active control. More attention to heart rate effects of antibiotics is warranted.

19.
Article in English | MEDLINE | ID: mdl-27746133

ABSTRACT

As human populations continue to expand, increases in coastal development have led to the alteration of much of the world's mangrove habitat, creating problems for the multitude of species that inhabit these unique ecosystems. Habitat alteration often leads to changes in habitat complexity and predation risk, which may serve as additional stressors for those species that rely on mangroves for protection from predators. However, few studies have been conducted to date to assess the effects of these specific stressors on glucocorticoid (GC) stress hormone levels in wild fish populations. Using the checkered puffer as a model, our study sought to examine the effects of physical habitat complexity and predator environment on baseline and acute stress-induced GC levels. This was accomplished by examining changes in glucose and cortisol concentrations of fish placed in artificial environments for short periods (several hours) where substrate type and the presence of mangrove roots and predator cues were manipulated. Our results suggest that baseline and stress-induced GC levels are not significantly influenced by changes in physical habitat complexity or the predator environment using the experimental protocol that we applied. Although more research is required, the current study suggests that checkered puffers may be capable of withstanding changes in habitat complexity and increases in predation risk without experiencing adverse GC-mediated physiological effects, possibly as a result of the puffers' unique morphological and chemical defenses that help them to avoid predation in the wild.


Subject(s)
Biodiversity , Food Chain , Glucocorticoids/blood , Hydrocortisone/blood , Stress, Physiological , Tetraodontiformes/physiology , Wetlands , Animals , Aquaculture , Bahamas , Blood Glucose/analysis , Cues , Economic Development , Tetraodontiformes/blood , Tetraodontiformes/growth & development , Urbanization
20.
Electron. j. biotechnol ; 19(4): 68-74, July 2016. ilus
Article in English | LILACS | ID: lil-793955

ABSTRACT

Background: Cultivation of algae for conversion to biofuels has gained global interest. Outdoor raceway cultivation is preferred because of its lower capital and operating costs. A major disadvantage of outdoor cultivation is susceptibility of algal crops to attack by predatory rotifers. In order to quantify the impact of rotifer attack on different species of algae, we evaluated the growth of eleven microalgal species over a 21-d period after being infected by the predatory rotifer Brachionus rubens. Results: Of the eleven species, Chlorella sorokiniana was the most susceptible with rapid decline in algal growth concomitant with increase in rotifer population growth (3.82/d). In contrast, Synechococcus elongatus andScenedesmus dimorphus were both resistant to the rotifer and suppressed rotifer growth (-0.06/d). An index of algal species susceptibility to be consumed by the rotifer was generated with C. sorokiniana as the baseline (index = 1.000) indicating most susceptible among species tested. Other species' susceptibilities are indicated in parenthesis as follows: Monoraphidium spp. (0.997), Chlamydomonas globosa (0.827), Botryococcus braunii(0.740), Chlorella minutissima (0.570), Chlamydomonas augustae (0.530), Chlamydomonas yellowstonensis (0.500), Scenedesmus bijuga (0.420), and Haematococcus pluvialis (0.360). Two species, namely, S. dimorphus andS. elongatus were unique in that they exhibited an ability to suppress the growth of the rotifer as indicated by the decline in rotifer populations in their presence. Conclusions: Variations in susceptibility of algal species to rotifer predation could be a result of their individual morphology, cell walls structure, or the biochemical composition of individual species.


Subject(s)
Animals , Rotifera , Microalgae/growth & development , Phenotype , Chlamydomonas/growth & development , Chlorella/growth & development , Cyanobacteria , Biomass , Flow Cytometry/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...