Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Biochemistry ; 58(41): 4183-4194, 2019 10 15.
Article in English | MEDLINE | ID: mdl-31566355

ABSTRACT

Cellular retinoic acid-binding protein 2 (CRABP2) delivers all-trans retinoic acid (atRA) to retinoic acid receptors (RARs), allowing for the activation of specific gene transcription. The structural similarities between free and atRA-bound CRABP2 raise the questions of how atRA binding occurs and how the atRA:CRABP2 complex is recognized by downstream binding partners. Thus, to gain insights into these questions, we conducted a detailed atRA-CRABP2 interaction study using nuclear magnetic resonance spectroscopy. The data showed that free CRABP2 displays widespread intermediate-time scale dynamics that is effectively suppressed upon atRA binding. This effect is mirrored by the fast-time scale dynamics of CRABP2. Unexpectedly, CRABP2 rigidification in response to atRA binding leads to the stabilization of a homodimerization interface, which encompasses residues located on helix α2 and the ßC-ßD loop as well as residues on strands ßI-ßA and the ßH-ßI loop. Critically, this rigidification also affects CRABP2's nuclear localization signal and RAR-binding motif, suggesting that the loss of conformational entropy upon atRA binding may be the key for the diverse cellular functions of CRABP2.


Subject(s)
Protein Multimerization , Receptors, Retinoic Acid/chemistry , Receptors, Retinoic Acid/metabolism , Tretinoin/chemistry , Tretinoin/metabolism , Cell Nucleus/metabolism , Crystallization , Entropy , Escherichia coli/genetics , Escherichia coli/metabolism , Humans , Hydrophobic and Hydrophilic Interactions , Kinetics , Ligands , Magnetic Resonance Spectroscopy , Protein Binding , Protein Structure, Secondary , Receptors, Retinoic Acid/genetics
2.
ACS Chem Biol ; 14(12): 2672-2682, 2019 12 20.
Article in English | MEDLINE | ID: mdl-31633908

ABSTRACT

The Phosphoprotein Phosphatase Calcineurin (CN, PP2B, PP3) recognizes and binds to two short linear motifs (SLiMs), PxIxIT and LxVP, in its regulators and substrates. These interactions enable CN function in many key biological processes. The identification of SLiMs is difficult because of their short, degenerate sequence and often low binding affinity. Here we combine Structure Based Shape Complementarity (SBSC) analysis and proteome-wide affinity purification-mass spectrometry to identify PxIxIT and LxVP containing CN interactors to expand and thereby redefine the LxVP motif. We find that the new πφ-LxVx primary sequence defines an ensemble of binding competent confirmations and thus the binding on-rate, making it difficult to predict the LxVP binding strength from its sequence. Our analysis confirms existing and, more importantly, identifies novel CN interactors, substrates, and thus biological functions of CN.


Subject(s)
Calcineurin/drug effects , Calcineurin/metabolism , Humans , Mass Spectrometry/methods , Protein Transport , Proteome , Substrate Specificity
3.
Proc Natl Acad Sci U S A ; 116(41): 20472-20481, 2019 10 08.
Article in English | MEDLINE | ID: mdl-31548429

ABSTRACT

The metalloenzyme protein phosphatase 1 (PP1), which is responsible for ≥50% of all dephosphorylation reactions, is regulated by scores of regulatory proteins, including the highly conserved SDS22 protein. SDS22 has numerous diverse functions, surprisingly acting as both a PP1 inhibitor and as an activator. Here, we integrate cellular, biophysical, and crystallographic studies to address this conundrum. We discovered that SDS22 selectively binds a unique conformation of PP1 that contains a single metal (M2) at its active site, i.e., SDS22 traps metal-deficient inactive PP1. Furthermore, we showed that SDS22 dissociation is accompanied by a second metal (M1) being loaded into PP1, as free metal cannot dissociate the complex and M1-deficient mutants remain constitutively trapped by SDS22. Together, our findings reveal that M1 metal loading and loss are essential for PP1 regulation in cells, which has broad implications for PP1 maturation, activity, and holoenzyme subunit exchange.


Subject(s)
Metals/metabolism , Nuclear Proteins/metabolism , Phosphoprotein Phosphatases/metabolism , Protein Phosphatase 1/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Amino Acid Sequence , Catalytic Domain , Metals/chemistry , Models, Molecular , Nuclear Proteins/chemistry , Phosphoprotein Phosphatases/chemistry , Phosphorylation , Protein Conformation , Protein Phosphatase 1/chemistry , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/growth & development , Saccharomyces cerevisiae Proteins/chemistry
4.
J Biol Chem ; 293(48): 18574-18584, 2018 11 30.
Article in English | MEDLINE | ID: mdl-30355734

ABSTRACT

The final steps of cell-wall biosynthesis in bacteria are carried out by penicillin-binding proteins (PBPs), whose transpeptidase domains form the cross-links in peptidoglycan chains that define the bacterial cell wall. These enzymes are the targets of ß-lactam antibiotics, as their inhibition reduces the structural integrity of the cell wall. Bacterial resistance to antibiotics is a rapidly growing concern; however, the structural underpinnings of PBP-derived antibiotic resistance are poorly understood. PBP4 and PBP5 are low-affinity, class B transpeptidases that confer antibiotic resistance to Enterococcus faecalis and Enterococcus faecium, respectively. Here, we report the crystal structures of PBP4 (1.8 Å) and PBP5 (2.7 Å) in their apo and acyl-enzyme complexes with the ß-lactams benzylpenicillin, imipenem, and ceftaroline. We found that, although these three ß-lactams adopt geometries similar to those observed in other class B PBP structures, there are small, but significant, differences that likely decrease antibiotic efficacy. Further, we also discovered that the N-terminal domain extensions in this class of PBPs undergo large rigid-body rotations without impacting the structure of the catalytic transpeptidase domain. Together, our findings are defining the subtle functional and structural differences in the Enterococcus PBPs that allow them to support transpeptidase activity while also conferring bacterial resistance to antibiotics that function as substrate mimics.


Subject(s)
Bacterial Proteins/chemistry , Enterococcus faecalis/metabolism , Enterococcus faecium/metabolism , Penicillin-Binding Proteins/chemistry , Protein Isoforms/chemistry , beta-Lactam Resistance , Acylation , Bacterial Proteins/genetics , Bacterial Proteins/isolation & purification , Bacterial Proteins/metabolism , Carbapenems/pharmacology , Catalytic Domain , Cephalosporins/pharmacology , Enterococcus faecalis/drug effects , Enterococcus faecium/drug effects , Microbial Sensitivity Tests , Penicillin-Binding Proteins/genetics , Penicillin-Binding Proteins/isolation & purification , Penicillin-Binding Proteins/metabolism , Penicillins/metabolism , Protein Conformation , Protein Domains , Protein Isoforms/genetics , Protein Isoforms/isolation & purification , beta-Lactam Resistance/genetics
5.
J Biol Chem ; 293(43): 16791-16802, 2018 10 26.
Article in English | MEDLINE | ID: mdl-30206122

ABSTRACT

The type I cGMP-dependent protein kinase (PKG I) is an essential regulator of vascular tone. It has been demonstrated that the type Iα isoform can be constitutively activated by oxidizing conditions. However, the amino acid residues implicated in this phenomenon are not fully elucidated. To investigate the molecular basis for this mechanism, we studied the effects of oxidation using recombinant WT, truncated, and mutant constructs of PKG I. Using an in vitro assay, we observed that oxidation with hydrogen peroxide (H2O2) resulted in constitutive, cGMP-independent activation of PKG Iα. PKG Iα C42S and a truncation construct that does not contain Cys-42 (Δ53) were both constitutively activated by H2O2 In contrast, oxidation of PKG Iα C117S maintained its cGMP-dependent activation characteristics, although oxidized PKG Iα C195S did not. To corroborate these results, we also tested the effects of our constructs on the PKG Iα-specific substrate, the large conductance potassium channel (KCa 1.1). Application of WT PKG Iα activated by either cGMP or H2O2 increased the open probabilities of the channel. Neither cGMP nor H2O2 activation of PKG Iα C42S significantly increased channel open probabilities. Moreover, cGMP-stimulated PKG Iα C117S increased KCa 1.1 activity, but this effect was not observed under oxidizing conditions. Finally, we observed that PKG Iα C42S caused channel flickers, indicating dramatically altered KCa 1.1 channel characteristics compared with channels exposed to WT PKG Iα. Cumulatively, these results indicate that constitutive activation of PKG Iα proceeds through oxidation of Cys-117 and further suggest that the formation of a sulfur acid is necessary for this phenotype.


Subject(s)
Cyclic GMP-Dependent Protein Kinase Type I/metabolism , Cyclic GMP/metabolism , Cysteine/metabolism , Amino Acid Sequence , Animals , Cattle , Cyclic GMP-Dependent Protein Kinase Type I/chemistry , Cysteine/chemistry , Models, Molecular , Nitric Oxide/metabolism , Oxidation-Reduction , Phosphorylation , Protein Conformation , Sequence Homology
6.
mBio ; 9(2)2018 04 03.
Article in English | MEDLINE | ID: mdl-29615500

ABSTRACT

Enterococcus faecalis strains resistant to penicillin and ampicillin are rare and have been associated with increases in quantities of low-affinity penicillin-binding protein 4 (PBP4) or with amino acid substitutions in PBP4. We report an E. faecalis strain (LS4828) isolated from a prosthetic knee joint that was subjected to long-term exposure to aminopenicillins. Subsequent cultures yielded E. faecalis with MICs of penicillins and carbapenems higher than those for wild-type strain E. faecalis JH2-2. Sequence analysis of the pbp4 gene of LS4828 compared to that of JH2-2 revealed two point mutations with amino acid substitutions (V223I, A617T) and deletion of an adenine from the region upstream of the predicted pbp4 -35 promoter sequence (UP region). Purified PBP4 from LS4828 exhibited less affinity for Bocillin FL than did PBP4 from JH2-2, which was recapitulated by purified PBP4 containing only the A617T mutation. Differential scanning fluorimetry studies showed that the LS4828 and A617T variants are destabilized compared to wild-type PBP4. Further, reverse transcription-PCR indicated increased transcription of pbp4 in LS4828 and Western blot analysis with polyclonal PBP4 antibody revealed greater quantities of PBP4 in LS4828 than in JH2-2 lysates and membrane preparations. Placing the promoter regions from LS4828 or JH2-2 upstream of a green fluorescent protein reporter gene confirmed that the adenine deletion was associated with increased transcription. Together, these data suggest that the reduced susceptibility to ß-lactam antibiotics observed in E. faecalis LS4828 results from a combination of both increased expression and remodeling of the active site, resulting in reduced affinity for penicillins and carbapenems.IMPORTANCEEnterococcus faecalis is an important cause of community-acquired and nosocomial infections and creates therapeutic dilemmas because of its frequent resistance to several classes of antibiotics. We report an E. faecalis strain with decreased ampicillin and imipenem susceptibility isolated after prolonged courses of aminopenicillin therapy for a prosthetic joint infection. Its reduced susceptibility is attributable to a combination of increased quantities of low-affinity PBP4 and an amino acid substitution in proximity to the active site that destabilizes the protein. Our findings provide a cautionary tale for clinicians who elect to "suppress" infections in prosthetic joints and offer novel insights into the interaction of ß-lactam antibiotics with low-affinity PBP4. These insights will help inform future efforts to develop therapeutics capable of inhibiting clinical enterococcal strains.


Subject(s)
Ampicillin/pharmacology , Anti-Bacterial Agents/pharmacology , Enterococcus faecalis/drug effects , Mutant Proteins/metabolism , Penicillin-Binding Proteins/metabolism , beta-Lactam Resistance , Amino Acid Substitution , Enterococcus faecalis/genetics , Enterococcus faecalis/isolation & purification , Gene Expression Profiling , Gram-Positive Bacterial Infections/microbiology , Humans , Microbial Sensitivity Tests , Mutant Proteins/genetics , Mutation, Missense , Penicillin-Binding Proteins/genetics , Point Mutation , Promoter Regions, Genetic , Prosthesis-Related Infections/microbiology , Sequence Analysis, DNA , Serial Passage
7.
J Biol Chem ; 293(21): 7916-7929, 2018 05 25.
Article in English | MEDLINE | ID: mdl-29602907

ABSTRACT

The type I cGMP-dependent protein kinases (PKG I) serve essential physiological functions, including smooth muscle relaxation, cardiac remodeling, and platelet aggregation. These enzymes form homodimers through their N-terminal dimerization domains, a feature implicated in regulating their cooperative activation. Previous investigations into the activation mechanisms of PKG I isoforms have been largely influenced by structures of the cAMP-dependent protein kinase (PKA). Here, we examined PKG Iα activation by cGMP and cAMP by engineering a monomeric form that lacks N-terminal residues 1-53 (Δ53). We found that the construct exists as a monomer as assessed by whole-protein MS, size-exclusion chromatography, and small-angle X-ray scattering (SAXS). Reconstruction of the SAXS 3D envelope indicates that Δ53 has a similar shape to the heterodimeric RIα-C complex of PKA. Moreover, we found that the Δ53 construct is autoinhibited in its cGMP-free state and can bind to and be activated by cGMP in a manner similar to full-length PKG Iα as assessed by surface plasmon resonance (SPR) spectroscopy. However, we found that the Δ53 variant does not exhibit cooperative activation, and its cyclic nucleotide selectivity is diminished. These findings support a model in which, despite structural similarities, PKG Iα activation is distinct from that of PKA, and its cooperativity is driven by in trans interactions between protomers.


Subject(s)
Cyclic GMP-Dependent Protein Kinase Type I/antagonists & inhibitors , Cyclic GMP-Dependent Protein Kinase Type I/metabolism , Cyclic GMP/metabolism , Protein Multimerization , Amino Acid Sequence , Animals , Cattle , Crystallography, X-Ray , Enzyme Activation , Humans , Mice , Models, Molecular , Phosphorylation , Protein Binding , Rats , Scattering, Small Angle , Sequence Homology
8.
Chem Biol ; 22(12): 1653-61, 2015 Dec 17.
Article in English | MEDLINE | ID: mdl-26687482

ABSTRACT

PKG is a multifaceted signaling molecule and potential pharmaceutical target due to its role in smooth muscle function. A helix identified in the structure of the regulatory domain of PKG Iα suggests a novel architecture of the holoenzyme. In this study, a set of synthetic peptides (S-tides), derived from this helix, was found to bind to and activate PKG Iα in a cyclic guanosine monophosphate (cGMP)-independent manner. The most potent S-tide derivative (S1.5) increased the open probability of the potassium channel KCa1.1 to levels equivalent to saturating cGMP. Introduction of S1.5 to smooth muscle cells in isolated, endothelium-denuded cerebral arteries through a modified reversible permeabilization procedure inhibited myogenic constriction. In contrast, in endothelium-intact vessels S1.5 had no effect on myogenic tone. This suggests that PKG Iα activation by S1.5 in vascular smooth muscle would be sufficient to inhibit augmented arterial contractility that frequently occurs following endothelial damage associated with cardiovascular disease.


Subject(s)
Cyclic GMP-Dependent Protein Kinase Type I/metabolism , Cyclic GMP , Drug Design , Peptide Library , Peptides/pharmacology , Animals , Circular Dichroism , Cyclic GMP-Dependent Protein Kinase Type I/isolation & purification , Enzyme Activation/drug effects , Enzyme Activators/chemical synthesis , Enzyme Activators/pharmacology , Microscopy, Confocal , Muscle, Smooth, Vascular/drug effects , Peptides/chemical synthesis , Protein Isoforms/isolation & purification , Rats
9.
Sci Signal ; 7(324): ra41, 2014 May 06.
Article in English | MEDLINE | ID: mdl-24803536

ABSTRACT

WNK1 [with no lysine (K)] is a serine-threonine kinase associated with a form of familial hypertension. WNK1 is at the top of a kinase cascade, leading to phosphorylation of several cotransporters, in particular those transporting sodium, potassium, and chloride (NKCC), sodium and chloride (NCC), and potassium and chloride (KCC). The responsiveness of NKCC, NCC, and KCC to changes in extracellular chloride parallels their phosphorylation state, provoking the proposal that these transporters are controlled by a chloride-sensitive protein kinase. We found that chloride stabilizes the inactive conformation of WNK1, preventing kinase autophosphorylation and activation. Crystallographic studies of inactive WNK1 in the presence of chloride revealed that chloride binds directly to the catalytic site, providing a basis for the unique position of the catalytic lysine. Mutagenesis of the chloride-binding site rendered the kinase less sensitive to inhibition of autophosphorylation by chloride, validating the binding site. Thus, these data suggest that WNK1 functions as a chloride sensor through direct binding of a regulatory chloride ion to the active site, which inhibits autophosphorylation.


Subject(s)
Chlorides/analysis , Intracellular Signaling Peptides and Proteins/metabolism , Protein Serine-Threonine Kinases/metabolism , Catalytic Domain , Crystallography, X-Ray , Humans , Intracellular Signaling Peptides and Proteins/chemistry , Minor Histocompatibility Antigens , Models, Molecular , Phosphorylation , Protein Serine-Threonine Kinases/chemistry , WNK Lysine-Deficient Protein Kinase 1
10.
J Mol Biol ; 425(8): 1245-52, 2013 Apr 26.
Article in English | MEDLINE | ID: mdl-23376100

ABSTRACT

WNK1 [with no lysine (K)-1] is a 250-kDa serine/threonine protein kinase involved in the maintenance of cellular salt levels and is directly linked to a hereditary form of hypertension. Here, we report the solution NMR structure of the autoinhibitory domain of WNK1 (WNK1-AI), a small regulatory subunit that lies immediately C-terminal of the kinase domain. We show that this domain is a homolog of the RFXV-binding PASK/FRAY homology 2 (PF2) domain found in OSR (oxidative stress responsive) and SPAK (serine/threonine proline-alanine-rich) kinases, which are substrates of WNK1. The WNK1-AI has a circularly permuted topology relative to the OSR1-PF2 domain. Nevertheless, like PF2 domains, WNK1-AI binds peptides that contain an RFXV motif with micromolar affinities as assessed by changes in (1)H,(15)N heteronuclear single quantum coherence spectra. Mutations to the WNK1-AI and binding peptides confirm a similar binding mode.


Subject(s)
Protein Serine-Threonine Kinases/chemistry , Amino Acid Sequence , Magnetic Resonance Spectroscopy , Minor Histocompatibility Antigens , Models, Molecular , Protein Binding , Protein Conformation , Sequence Homology, Amino Acid , WNK Lysine-Deficient Protein Kinase 1
11.
Biochim Biophys Acta ; 1834(7): 1346-51, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23416533

ABSTRACT

For over three decades the isozymes of cGMP-dependent protein kinase (PKG) have been studied using an array of biochemical and biophysical techniques. When compared to its closest cousin, cAMP-dependent protein kinase (PKA), these studies revealed a set of identical domain types, yet containing distinct, sequence-specific features. The recently solved structure of the PKG regulatory domain showed the presence of the switch helix (SW), a novel motif that promotes the formation of a domain-swapped dimer in the asymmetric unit. This dimer is mediated by the interaction of a knob motif on the C-terminal locus of the SW, with a hydrophobic nest on the opposing protomer. This nest sits adjacent to the cGMP binding pocket of the B-site. Priming of this site by cGMP may influence the geometry of the hydrophobic nest. Moreover, this unique interaction may have wide implications for the architecture of the inactive and active forms of PKG. This article is part of a Special Issue entitled: Inhibitors of Protein Kinases (2012).


Subject(s)
Cyclic GMP-Dependent Protein Kinases/chemistry , Cyclic GMP/chemistry , Protein Structure, Secondary , Protein Structure, Tertiary , Amino Acid Sequence , Cyclic GMP/metabolism , Cyclic GMP-Dependent Protein Kinases/genetics , Cyclic GMP-Dependent Protein Kinases/metabolism , Humans , Models, Molecular , Molecular Sequence Data , Protein Multimerization , Sequence Homology, Amino Acid
12.
Biochim Biophys Acta ; 1784(1): 48-55, 2008 Jan.
Article in English | MEDLINE | ID: mdl-18068683

ABSTRACT

Map kinases are drug targets for autoimmune disease, cancer, and apoptosis-related diseases. Drug discovery efforts have developed MAP kinase inhibitors directed toward the ATP binding site and neighboring "DFG-out" site, both of which are targets for inhibitors of other protein kinases. On the other hand, MAP kinases have unique substrate and small molecule binding sites that could serve as inhibition sites. The substrate and processing enzyme D-motif binding site is present in all MAP kinases, and has many features of a good small molecule binding site. Further, the MAP kinase p38alpha has a binding site near its C-terminus discovered in crystallographic studies. Finally, the MAP kinases ERK2 and p38alpha have a second substrate binding site, the FXFP binding site that is exposed in active ERK2 and the D-motif peptide induced conformation of MAP kinases. Crystallographic evidence of these latter two binding sites is presented.


Subject(s)
Mitogen-Activated Protein Kinases/chemistry , Mitogen-Activated Protein Kinases/metabolism , Amino Acid Motifs , Animals , Antineoplastic Agents/metabolism , Binding Sites , Crystallography, X-Ray , Flavonoids/metabolism , Humans , Mitogen-Activated Protein Kinase 1/chemistry , Mitogen-Activated Protein Kinase 1/metabolism , Protein Binding , Protein Conformation , Protein Kinase Inhibitors/metabolism , Sulindac/analogs & derivatives , Sulindac/metabolism , p38 Mitogen-Activated Protein Kinases/chemistry , p38 Mitogen-Activated Protein Kinases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...