Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Heliyon ; 9(9): e19772, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37810102

ABSTRACT

Soluble epoxide hydrolase (sEH) is a therapeutic target for inflammation. In the present study, we isolated one new (1) and four known (2-5) compounds from the ethyl acetate fraction of hemp seed hulls. Their structures were elucidated as lignanamides via nuclear magnetic resonance and mass spectral analyses. All five compounds inhibited sEH activity, with half-maximal inhibitory concentrations of 2.7 ± 0.3 to 18.3 ± 1.0 µM. These lignanamides showed a competitive mechanism of inhibition via binding to sEH, with ki values below 10 µmol. Molecular simulations revealed that compounds 1-5 fit stably into the active site of sEH, and the key amino acid residues participating in their bonds were identified. It was confirmed that the potential inhibitors 4 and 5 continuously maintained a distance of 3.5 Å from one (Tyr383) and four amino (Asp335, Tyr383, Asn472, tyr516) residues, respectively. These findings provide a framework for the development of naturally derived sEH inhibitors.

2.
Plants (Basel) ; 12(20)2023 Oct 23.
Article in English | MEDLINE | ID: mdl-37896119

ABSTRACT

The pursuit of anti-inflammatory agents has led to intensive research on the inhibition of soluble epoxide hydrolase (sEH) and cytokine production using medicinal plants. In this study, we evaluated the efficacy of cis-khellactone, a compound isolated for the first time from the roots of Peucedanum japonicum. The compound was found to be a competitive inhibitor of sEH, exhibiting an IC50 value of 3.1 ± 2.5 µM and ki value of 3.5 µM. Molecular docking and dynamics simulations illustrated the binding pose of (-)cis-khellactone within the active site of sEH. The results suggest that binding of the inhibitor to the enzyme is largely dependent on the Trp336-Gln384 loop within the active site. Further, cis-khellactone was found to inhibit pro-inflammatory cytokines, including NO, iNOS, IL-1ß, and IL-4. These findings affirm that cis-khellactone could serve as a natural therapeutic candidate for the treatment of inflammation.

3.
J Enzyme Inhib Med Chem ; 38(1): 2242704, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37537881

ABSTRACT

Coronavirus disease 2019 (COVID-19) is an infectious disease caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). 3CLpro is a key enzyme in coronavirus proliferation and a treatment target for COVID-19. In vitro and in silico, compounds 1-3 from Glycyrrhiza uralensis had inhibitory activity and binding affinity for 3CLpro. These compounds decreased HCoV-OC43 cytotoxicity in RD cells. Moreover, they inhibited viral growth by reducing the amounts of the necessary proteins (M, N, and RDRP). Therefore, compounds 1-3 are inhibitors of 3CLpro and HCoV-OC43 proliferation.


Subject(s)
Coronavirus 3C Proteases , Coronavirus OC43, Human , Glycyrrhiza uralensis , Cell Proliferation , Coronavirus OC43, Human/drug effects , Glycyrrhiza uralensis/chemistry , SARS-CoV-2 , Coronavirus 3C Proteases/antagonists & inhibitors
4.
Int J Mol Sci ; 24(7)2023 Mar 30.
Article in English | MEDLINE | ID: mdl-37047457

ABSTRACT

Soluble epoxide hydrolase (sEH) is a target enzyme for the treatment of inflammation and cardiovascular disease. A Glycyrrhiza uralensis extract exhibited ~50% inhibition of sEH at 100 µg/mL, and column chromatography yielded compounds 1-11. Inhibitors 1, 4-6, 9, and 11 were non-competitive; inhibitors 3, 7, 8, and 10 were competitive. The IC50 value of inhibitor 10 was below 2 µM. Molecular simulation was used to identify the sEH binding site. Glycycoumarin (10) requires further evaluation in cells and animals.


Subject(s)
Epoxide Hydrolases , Glycyrrhiza uralensis , Animals , Epoxide Hydrolases/metabolism , Glycyrrhiza uralensis/metabolism , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Computer Simulation , Inflammation , Solubility
5.
Int J Biol Macromol ; 222(Pt B): 2098-2104, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36208809

ABSTRACT

In our ongoing efforts to identify effective natural antiviral agents, four methoxy flavonoids (1-4) were isolated from the Inula britannica flower extract. Their structures were elucidated using nuclear magnetic resonance. Flavonoids 1-4 exhibited inhibitory activity against SARS- CoV-2 3CLpro with IC50 values of 41.6 ± 2.5, 35.9 ± 0.9, 32.8 ± 1.2, and 96.6 ± 3.4 µM, respectively. Flavonoids 1-3 inhibited 3CLpro in a competitive manner. Based on molecular simulations, key amino acids that form hydrogen bond with inhibitor 3 were identified. Finally, we found that inhibitors (1-3) suppressed HCoV-OC43 coronavirus proliferation at micromole concentrations.


Subject(s)
COVID-19 , Inula , SARS-CoV-2 , Inula/chemistry , Flavonoids/pharmacology , Flavonoids/chemistry , Flowers , Antiviral Agents/pharmacology , Antiviral Agents/chemistry
6.
Curr Issues Mol Biol ; 44(9): 4282-4289, 2022 Sep 16.
Article in English | MEDLINE | ID: mdl-36135206

ABSTRACT

The quaternary isoquinoline alkaloids of palmatine (1), berberine (2), and jatrorrhizine (3) were evaluated in terms of their ability to inhibit soluble epoxide hydrolase (sEH). They had similar inhibitory activities, with IC50 values of 29.6 ± 0.5, 33.4 ± 0.8, and 27.3 ± 0.4 µM, respectively. Their respective Ki values of 26.9, 46.8, and 44.5 µM-determined by enzyme kinetics-indicated that they inhibited the catalytic reaction by binding noncompetitively with sEH. The application of computational chemistry to the in vitro results revealed the site of the receptor to which the ligand would likely bind. Accordingly, three alkaloids were identified as having a suitable basic skeleton for lead compound development of sEH inhibitors.

7.
J Microbiol Biotechnol ; 31(11): 1576-1582, 2021 11 28.
Article in English | MEDLINE | ID: mdl-34528918

ABSTRACT

Bacterial ß-glucuronidase in the intestine is involved in the conversion of 7-ethyl-10- hydroxycamptochecin glucuronide (derived from irinotecan) to 7-ethyl-10-hydroxycamptothecin, which causes intestinal bleeding and diarrhea (side effects of anti-cancer drugs). Twelve compounds (1-12) from Polygala tenuifolia were evaluated in terms of ß-glucuronidase inhibition in vitro. 4-O-Benzoyl-3'-O-(O-methylsinapoyl) sucrose (C3) was highly inhibitory at low concentrations. C3 (an uncompetitive inhibitor) exhibited a ki value of 13.4 µM; inhibitory activity increased as the substrate concentration rose. Molecular simulation revealed that C3 bound principally to the Gln158-Tyr160 enzyme loop. Thus, C3 will serve as a lead compound for development of new ß- glucuronidase inhibitors.


Subject(s)
Enzyme Inhibitors/pharmacology , Escherichia coli/enzymology , Glucuronidase/antagonists & inhibitors , Polygala/chemistry , Sucrose/pharmacology , Escherichia coli Proteins/antagonists & inhibitors , Irinotecan , Molecular Docking Simulation , Molecular Dynamics Simulation , Protein Structure, Tertiary
8.
J Sci Food Agric ; 100(7): 2819-2827, 2020 May.
Article in English | MEDLINE | ID: mdl-31985064

ABSTRACT

BACKGROUND: With a growing market for functional foods, the nutraceutical properties of hemp sprouts have been investigated in recent studies. However, commercial mass production methods have yet to be developed. This study aimed to identify seed sizes suitable for segregating ripe seeds, which would improve the low germination rate in the high seed densities used in commercial hemp sprout production. RESULTS: Seeds ranging in size from 2.80 to 3.3 mm, collected by sieving, were the most suitable for sprouting, based on the distribution rate (74.9%) and germination rate (70.0%) at a low seed density (0.016 grains mm-2 ). Seed segregation by sinking the seeds in 70% ethanol after 2 h or more of water infiltration generated high germination rates of 86.3% to 94.3% at low seed density, compared to a 64.0% germination rate in non-segregated seeds. The hemp seed germination rate decreased geometrically with increasing sowing density. The germination rate with a high seed density (0.29 grains mm-2 ) was increased from 19.9% when seeds were not mixed with sand to 58.7% when mixed with sand in a 3:1 ratio. The sprouting yield significantly increased from 1.64 kg kg-1 when seeds were not mixed with sand to 9.55 kg kg-1 in seeds germinating when mixed with sand. Delta-9-tetrahydrocannabinol was not detected in hemp sprout. CONCLUSION: The production of hemp sprouts may be improved by identifying suitable seed sizes, segregating ripe seeds, and germinating seeds mixed with sand. This can be used in the commercial production of hemp sprouts. The sprouts were also found to be safe and without hallucinogenic effects. © 2020 Society of Chemical Industry.


Subject(s)
Cannabis/growth & development , Germination/physiology , Seeds , Crop Production/methods , Seedlings/chemistry
9.
Bioresour Technol ; 297: 122399, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31759855

ABSTRACT

Lignin nano-/microstructures are widely employed for agricultural drug delivery and heavy metal removal from wastewater, and facile low-cost methods of their large-scale production are therefore highly sought after. Herein, uniform-morphology polydisperse lignin microspheres were directly extracted from black liquor by lowering its pH to <4 followed by hydrothermal treatment and featured several lignin-typical characteristics, e.g., functional groups, thermal stability, amorphousness, and monolignol units. It was assumed that lignin rearranged and assembled into microspheres of various size, shape, and uniformity depending on pH, temperature, and hydrothermal treatment time. Lignin microsphere extraction efficiency was estimated as 15.87-21.62 g L-1, and the average size of microspheres obtained under different conditions was calculated as ∼1 µm, while the C, H, O, and N contents equaled 48-62, 5-6, 30-36, and 0.2-1.5%, respectively. Thus, our method was deemed suitable for direct large-scale extraction of lignin microspheres from black liquor.


Subject(s)
Lignin , Wastewater , Alcoholic Beverages , Microspheres , Temperature
10.
Plant Signal Behav ; 14(12): 1678369, 2019.
Article in English | MEDLINE | ID: mdl-31610733

ABSTRACT

The use of rapeseed (Brassica napus L.) or leaf mustard (Brassica juncea L. Czern) meal or both as organic fertilizer not only improves the soil environment and crop productivity by supplying nutrients but also has nematicidal effects. This study aimed to establish the optimal application levels of rapeseed and leaf mustard meal for stronger nematode control in tomato. Tomato is one of the most important solanaceous crops which is severely damaged by nematodes. At first, meal (120 g of varying mixing ratios of rapeseed and leaf mustard meal) was mixed with sterilized soil (1 kg). The optimal ratio of rapeseed:leaf mustard meal for effective nematode control was 20:100 g/kg of soil. Progoitrin and gluconapin were the most abundant glucosinolates found in rapeseed meal, while sinigrin was the most abundant in leaf mustard meal. The amount of sinigrin increased if the leaf mustard meal proportion increased in the meal mixture. Although the content of sinigrin in optimal ratio mixture of rapeseed and leaf mustard meal is lower than only leaf mustard meal, it is presumed that nematocidal effects of the mixture are better than that of the single component due to the high contents of progoitrin and gluconapin. So, we propose that rapeseed and leaf mustard meal mixture at an appropriate ratio can be used as an environmentally friendly nematocide.


Subject(s)
Brassica napus/parasitology , Mustard Plant/parasitology , Tylenchoidea/physiology , Animals , Glucosinolates/metabolism , Host-Parasite Interactions/physiology , Solanum lycopersicum/parasitology
11.
Bioresour Technol ; 181: 338-44, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25681689

ABSTRACT

Miscanthus sacchariflorus 'Goedae-Uksae 1' (GU) was developed as an energy crop of high productivity in Korea. For the practical use of GU for bioethanol production, a bench-scale continuous pretreatment system was developed. The reactor performed screw extrusion, soaking and thermochemical pretreatment at the following operating conditions: 3 mm particle size, 22% moisture content, 140 °C reaction temperature, 8 min residence time, 15 g/min biomass feeding and 120 mL/min NaOH input. As a result of minimizing NaOH concentration and enzyme dosage, 90.8±0.49% glucose yield was obtained from 0.5 M NaOH-pretreated GU containing 3% glucan with 10 FPU cellulase/g cellulose at 50 °C for 72 h. The separate hydrolysis and fermentation of 0.5 M NaOH-pretreated GU containing 10% glucan with 10-30 FPU for 102 h produced 43.0-49.6 g/L bioethanol (theoretical yield, 75.8-87.6%). Thus, this study demonstrated that continuous pretreatment using a single screw reactor is effective for bioethanol production from Miscanthus biomass.


Subject(s)
Bioreactors , Biotechnology/instrumentation , Biotechnology/methods , Poaceae/drug effects , Sodium Hydroxide/pharmacology , Biomass , Carbohydrate Metabolism/drug effects , Cellulase/metabolism , Fermentation/drug effects , Hydrolysis
12.
Bioprocess Biosyst Eng ; 37(9): 1907-15, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24671270

ABSTRACT

A CO2-added ammonia explosion pretreatment was performed for bioethanol production from rice straw. The pretreatment conditions, such as ammonia concentration, CO2 loading level, residence time, and temperature were optimized using response surface methodology. The response for optimization was defined as the glucose conversion rate. The optimized pretreatment conditions resulting in maximal glucose yield (93.6 %) were determined as 14.3 % of ammonia concentration, 2.2 MPa of CO2 loading level, 165.1 °C of temperature, and 69.8 min of residence time. Scanning electron microscopy analysis showed that pretreatment of rice straw strongly increased the surface area and pore size, thus increasing enzymatic accessibility for enzymatic saccharification. Finally, an ethanol yield of 97 % was achieved via simultaneous saccharification and fermentation. Thus, the present study suggests that CO2-added ammonia pretreatment is an appropriate process for bioethanol production from rice straw.


Subject(s)
Ammonia/metabolism , Carbon Dioxide/metabolism , Ethanol/metabolism , Oryza/metabolism , Fermentation , Microscopy, Electron, Scanning
13.
Bioprocess Biosyst Eng ; 36(6): 695-703, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23546735

ABSTRACT

Miscanthus is referred to as an ideal lignocellulosic bioenergy crop, which can be used to generate heat, power, and fuel, as well as to reduce carbon dioxide emissions. The new Miscanthus sacchariflorus genotype named Geodae-Uksae 1 was recently collected from damp land in southern Korea. This study investigated the growth characteristics of Miscanthus genotypes, and developed a specific, sensitive, and reproducible sequence characterized amplified region (SCAR) marker to distinguish new M. sacchariflorus genotype Geodae-Uksae 1 from other native Miscanthus species in Korea. Growth characteristics such as stem length, stem diameter, and dry weight of Geodae-Uksae 1 were greater than those of normal M. sacchariflorus. The genotypes within Geodae-Uksae 1 were had the highest genetic similarity. A putative 1,800-bp polymorphic sequence specific to Geodae-Uksae 1 was identified with the random amplified polymorphic DNA (RAPD) N8018 primer. The sequence-characterized amplified region (SCAR) primers Geodae 1-F and Geodae 1-R were designed based on the unique RAPD amplicon. The SCAR primers produced a specific 1,799-bp amplicon in authentic Geodae-Uksae 1, whereas no amplification was observed in other Miscanthus species. The SCAR marker could contribute to identify Geodae-Uksae 1 among native Miscanthus species. The new Miscanthus genotype Geodae-Uksae 1 has great potential as an alternative lignocellulosic biomass feedstock for bioenergy productions.


Subject(s)
Biofuels , Genotype , Plant Stems/genetics , Poaceae/genetics , Genetic Markers , Lignin/genetics , Lignin/metabolism , Organ Size/genetics , Plant Stems/growth & development , Poaceae/classification , Poaceae/growth & development , Random Amplified Polymorphic DNA Technique
14.
Bioprocess Biosyst Eng ; 35(1-2): 55-9, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22124780

ABSTRACT

The sequence-characterized amplified region (SCAR) marker for simultaneous identification of Miscanthus sacchariflorus, Miscanthus sinensis, and Miscanthus x giganteus was developed. In this study, it was attempted for the first time to develop the SCAR marker for detecting the molecular phenotypes among Miscanthus species. Randomly amplified polymorphic DNA technique was applied for this study and one fragment which is unique to M. sacchariflorus was identified and then sequenced. Based on the specific fragment, one SCAR primer pair designated as MS62-5F and MS62-5R was designed to amplify an approximately 1,000 bp DNA fragment within the sequenced region. Diagnostic PCR was performed using the primer pair. Using this SCAR marker, approximately 1,000 bp and 1,200 bp DNA fragments were obtained in M. sacchariflorus and M. sinensis, respectively. Moreover, M. x giganteus was obtained both bands at the same time. The result showed that this SCAR marker can clearly distinguish the M. sacchariflorus, M. sinensis, and M. x giganteus, respectively.


Subject(s)
DNA, Plant/genetics , Genetic Markers/genetics , Poaceae/classification , Poaceae/genetics , Polymerase Chain Reaction/methods , Random Amplified Polymorphic DNA Technique/methods , DNA, Plant/analysis , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...