Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
1.
Med Sci (Basel) ; 8(4)2020 Sep 27.
Article in English | MEDLINE | ID: mdl-32992571

ABSTRACT

Pre-hospital treatment of traumatic brain injury (TBI) with co-existing polytrauma is complicated by requirements for intravenous fluid volume vs. hypotensive resuscitation. A low volume, small particle-size-oxygen-carrier perfluorocarbon emulsion NVX-428 (dodecafluoropentane emulsion; 2% w/v) could improve brain tissue with minimal additional fluid volume. This study examined whether the oxygen-carrier NVX-428 shows safety and efficacy for pre-hospital treatment of TBI. Anesthetized swine underwent fluid percussion injury TBI and received 1 mL/kg IV NVX-428 (TBI-NVX) at 15 min (T15) or normal saline (no-treatment) (TBI-NON). Similarly, uninjured swine received NVX-428 (SHAM-NVX) or normal saline (SHAM-NON). Animals were monitored and measurements were taken for physiological and neurological parameters before euthanasia at the six-hour mark (T360). Histopathological analysis was performed on paraffin embedded tissues. Physiological, biochemical and blood gas parameters were not different, with the exception of a significant but transient increase in mean pulmonary artery pressure observed in the TBI-experimental group immediately after drug administration. There were no initial differences in brain oxygenation at baseline, but over time oxygen decreased ~50% in both TBI groups. Histological brain injury scores were similar between TBI-NVX and TBI-NON, although a number of subcategories (spongiosis-ischemic/dead neurons-hemorrhage-edema) in TBI-NVX had a tendency for lower scores. The cerebellum showed significantly lower spongiosis and ischemic/dead neuron injury scores and a lower number of Fluoro-Jade-B-positive cerebellar-Purkinje-cells after NVX-428 treatment compared to controls. NVX-428 may assist in mitigating secondary cellular brain damage.

2.
Mil Med ; 185(Suppl 1): 57-66, 2020 01 07.
Article in English | MEDLINE | ID: mdl-32074309

ABSTRACT

INTRODUCTION: Rapid aeromedical evacuation (AE) is standard of care in current conflicts. However, not much is known about possible effects of hypobaric conditions. We investigated possible effects of hypobaria on organ damage in a swine model of acute lung injury. METHODS: Lung injury was induced in anesthetized swine via intravenous oleic acid infusion. After a stabilization phase, animals were subjected to a 4 hour simulated AE at 8000 feet (HYPO). Control animals were kept at normobaria. After euthanasia and necropsy, organ damage was assessed by combined scores for hemorrhage, inflammation, edema, necrosis, and microatelectasis. RESULTS: Hemodynamic, neurological, or hematologic measurements were similar prior to transport. Hemodynamic instability became apparent during the last 2 hours of transport in the HYPO group. Histological injury scores in the HYPO group were higher for all organs (lung, kidney, liver, pancreas, and adrenal glands) except the brain, with the largest difference in the lungs (P < 0.001). CONCLUSIONS: Swine with mild acute lung injury subjected to a 4 hour simulated AE showed more injury to most organs and, in particular, to the lungs compared with ground transport. This may exacerbate otherwise subclinical pathology and, eventually, manifest as abnormalities in gas exchange or possibly end-organ function.


Subject(s)
Acute Lung Injury/etiology , Multiple Organ Failure/pathology , Acute Lung Injury/pathology , Acute Lung Injury/physiopathology , Aerospace Medicine/methods , Animals , Disease Models, Animal , Multiple Organ Failure/etiology , Multiple Organ Failure/physiopathology , Oleic Acid/adverse effects , Oleic Acid/pharmacology , Swine/injuries , Swine/physiology
3.
Shock ; 52(1S Suppl 1): 50-54, 2019 10.
Article in English | MEDLINE | ID: mdl-29176401

ABSTRACT

Dodecafluoropentane emulsion (DDFPe) is a novel nanotechnology for oxygen delivery with therapeutic potential for hemorrhagic shock and/or traumatic brain injury (TBI). DDFPe demonstrates efficacy at smaller doses than previously tested perfluorocarbon oxygen therapeutics. This smaller dose potentially eliminates toxicities exhibited by previous oxygen therapeutics, whereas anti-inflammatory properties of DDFPe may alleviate damage from ischemia reperfusion injury. This minireview summarizes our progress in developing a battlefield-ready product to prevent combat death due to hemorrhagic shock and/or TBI. Preclinical studies, for both indications, show promising effects of DDFPe as a resuscitation fluid. DDFPe may become a part of the toolkit for tactical healthcare professionals in battlefield and domestic emergency medicine.


Subject(s)
Brain Injuries, Traumatic/therapy , Fluorocarbons/chemistry , Fluorocarbons/therapeutic use , Shock, Hemorrhagic/therapy , Animals , Anti-Inflammatory Agents/therapeutic use , Fluid Therapy/methods , Humans
4.
J Trauma Acute Care Surg ; 86(1): 116-122, 2019 01.
Article in English | MEDLINE | ID: mdl-29985235

ABSTRACT

BACKGROUND: Aeromedical evacuation to definitive care is standard in current military conflicts. However, there is minimal knowledge on the effects of hypobaria (HYPO) on either the flight crew or patients. The effects of HYPO were investigated using healthy swine. METHODS: Anesthetized Yorkshire swine underwent a simulated 4 h "transport" to an altitude of 2,441 m (8,000 feet.; HYPO, N = 6) or at normobaric conditions (NORMO, N = 6). Physiologic and biochemical data were collected. Organ damage was assessed for hemorrhage, inflammation, edema, necrosis, and for lungs only, microatelectasis. RESULTS: All parameters were similar prior to and after "transport" with no significant effects of HYPO on hemodynamic, neurologic, or oxygen transport parameters, nor on blood gas, chemistry, or complete blood count data. However, the overall Lung Injury Score was significantly worse in the HYPO than the NORMO group (10.78 ± 1.22 vs. 2.31 ± 0.71, respectively) with more edema/fibrin/hemorrhage in the subpleural, interlobular and alveolar space, more congestion in alveolar septa, and evidence of microatelectasis (vs. no microatelectasis in the NORMO group). There was also increased severity of pulmonary neutrophilic (1.69 ± 0.20 vs. 0.19 ± 0.13) and histiocytic inflammation (1.83 ± 0.23 vs. 0.47 ± 0.17) for HYPO versus NORMO, respectively. On the other hand, there was increased renal inflammation in NORMO compared with HYPO (1.00 ± 0.13 vs. 0.33 ± 0.17, respectively). There were no histopathological differences in brain (whole or individual regions), liver, pancreas, or adrenals. CONCLUSION: Hypobaria, itself, may have an adverse effect on the respiratory system, even in healthy individuals, and this may be superimposed on combat casualties where there may be preexisting lung injury. The additional effects of anesthesia and controlled ventilation on these results are unknown, and further studies are indicated using awake models to better characterize the mechanisms for this pathology and the factors that influence its severity.


Subject(s)
Air Ambulances/statistics & numerical data , Barotrauma/complications , Brain/pathology , Lung/pathology , Altitude , Animals , Atmospheric Pressure , Blood Gas Analysis/methods , Brain Injuries/etiology , Disease Models, Animal , Edema/pathology , Female , Hemodynamics/physiology , Hemorrhage/pathology , Inflammation/immunology , Inflammation/pathology , Lung Injury/etiology , Male , Necrosis/pathology , Pulmonary Atelectasis/pathology , Swine
5.
Microcirculation ; 25(3): e12441, 2018 04.
Article in English | MEDLINE | ID: mdl-29356218

ABSTRACT

OBJECTIVE: The aim of this study was to assess, in two experiments, the safety and efficacy of the PFC emulsion Oxycyte as an oxygen therapeutic for TBI to test the hypothesis that early administration of this oxygen-carrying fluid post-TBI would improve brain tissue oxygenation (Pbt O2 ). METHODS: The first experiment assessed the effects of Oxycyte on cerebral vasoactivity in healthy, uninjured rats using intravital microscopy. The second experiment investigated the effect of Oxycyte on cerebral Pbt O2 using the PQM in TBI model. Animals in the Oxycyte group received a single injection of Oxycyte (6 mL/kg) shortly after TBI, while NON animals received no treatment. RESULTS: Oxycyte did not cause vasoconstriction in small- (<50 µm) or medium- (50-100 µm) sized pial arterioles nor did it cause a significant change in blood pressure. Treatment with Oxycyte while breathing 100% O2 did not improve Pbt O2 . However, in rats ventilated with ~40% O2 , Pbt O2 improved to near pre-TBI values within 105 minutes after Oxycyte injection. CONCLUSIONS: Although Oxycyte did not cause cerebral vasoconstriction, its use at the dose tested while breathing 100% O2 did not improve Pbt O2 following TBI. However, Oxycyte treatment while breathing a lower enriched oxygen concentration may improve Pbt O2 after TBI.


Subject(s)
Brain Injuries, Traumatic/therapy , Fluorocarbons/therapeutic use , Oxygen/blood , Animals , Arterioles/physiology , Brain/metabolism , Cerebrovascular Circulation , Intravital Microscopy , Oxygen/administration & dosage , Rats , Vasoconstriction/drug effects
6.
J Appl Physiol (1985) ; 122(5): 1227-1237, 2017 May 01.
Article in English | MEDLINE | ID: mdl-28183818

ABSTRACT

Hemoglobin-based oxygen carrier (HBOC)-201 is a cell-free modified hemoglobin solution potentially facilitating oxygen uptake and delivery in cardiovascular disorders and hemorrhagic shock. Clinical use has been hampered by vasoconstriction in the systemic and pulmonary beds. Therefore, we aimed to 1) determine the possibility of counteracting HBOC-201-induced pressor effects with either adenosine (ADO) or nitroglycerin (NTG); 2) assess the potential roles of nitric oxide (NO) scavenging, reactive oxygen species (ROS), and endothelin (ET) in mediating the observed vasoconstriction; and 3) compare these effects in resting and exercising swine. Chronically instrumented swine were studied at rest and during exercise after administration of HBOC-201 alone or in combination with ADO. The role of NO was assessed by supplementation with NTG or administration of the eNOS inhibitor Nω-nitro-l-arginine. Alternative vasoactive pathways were investigated via intravenous administration of the ETA/ETB receptor blocker tezosentan or a mixture of ROS scavengers. The systemic and to a lesser extent the pulmonary pressor effects of HBOC-201 could be counteracted by ADO; however, dosage titration was very important to avoid systemic hypotension. Similarly, supplementation of NO with NTG negated the pressor effects but also required titration of the dose. The pressor response to HBOC-201 was reduced after eNOS inhibition and abolished by simultaneous ETA/ETB receptor blockade, while ROS scavenging had no effect. In conclusion, the pressor response to HBOC-201 is mediated by vasoconstriction due to NO scavenging and production of ET. Further research should explore the effect of longer-acting ET receptor blockers to counteract the side effect of hemoglobin-based oxygen carriers.NEW & NOTEWORTHY Hemoglobin-based oxygen carrier (HBOC)-201 can disrupt hemodynamic homeostasis, mimicking some aspects of endothelial dysfunction, resulting in elevated systemic and pulmonary blood pressures. HBOC-201-induced vasoconstriction is mediated by scavenging nitric oxide (NO) and by upregulating endothelin (ET) production. Pressor effects can be prevented by adjuvant treatment with NO donors or direct vasodilators, such as nitroglycerin or adenosine, but dosages must be carefully monitored to avoid hypotension. However, hemodynamic normalization is more easily achieved via administration of an ET receptor blocker.


Subject(s)
Endothelins/metabolism , Hemoglobins/pharmacology , Nitric Oxide/metabolism , Vasoconstriction/drug effects , Vasoconstrictor Agents/pharmacology , Adenosine/metabolism , Animals , Blood Pressure/drug effects , Blood Substitutes/pharmacology , Female , Hypotension/metabolism , Male , Nitroglycerin/metabolism , Physical Conditioning, Animal/physiology , Reactive Oxygen Species/metabolism , Receptors, Endothelin/metabolism , Swine
7.
Artif Cells Nanomed Biotechnol ; 45(1): 58-62, 2017 Feb.
Article in English | MEDLINE | ID: mdl-26934005

ABSTRACT

Background/aims Hemoglobin-based oxygen carriers (HBOCs) have been previously studied as resuscitation fluids. Due to HBOCs specific molecular conformation, hemoglobin (Hb) and methemoglobin (MetHb) determination is not always possible with automated apparatus. A practical technique was designed that allows simultaneous reading of MetHb and Hb in small volume samples. Methods A spectrophotometric method for measuring low levels of MetHb and Hb from limited volume samples was developed using a 96-well-plate by downsizing the Evelyn-Malloy and Drabkin methods. Either blood or buffer samples were spiked with one of five HBOCs (HBOC-201, M101, MP4CO-NP, Sanguinate and Oxyvita C). After treatment with cyanides, the samples were read at 540, 630, and 680 nm, and Hb and MetHb results were compared to certificate-of-analysis. Results Hb levels ranging from 0.2 to 2.8 g/dl were detected accurately with the 96-well-plate method with HBOC-201. Similarly, this method accurately measured Hb from either plasma or buffer samples containing any of the HBOCs. The MetHb plasma samples with HBOC-201 were also in agreement with ABL results (R = 0.99719). MetHb from all HBOCs in buffer measured with this method was comparable to reference but the accuracy was compromised for HBOCs in blood. Conclusions A useful 96-well-plate method of measuring HBOCs' Hb was designed for small-volume plasma samples. It was accurate for measuring MetHb from samples, that contained M101, MP4CO-NP, Sanguinate, and Oxyvita C diluted in buffer. This well-plate method allows reading of batch samples, multiple replicates, and using small volumes to accommodate limited animal blood collection which would not be otherwise detected by automated instrumentation.


Subject(s)
Methemoglobin/analysis , Animals , Rats
8.
J Neurotrauma ; 34(19): 2812-2822, 2017 10 01.
Article in English | MEDLINE | ID: mdl-26161914

ABSTRACT

The severity of traumatic brain injury (TBI) may be reduced if oxygen can be rapidly provided to the injured brain. This study evaluated if the oxygen-carrier M101 causes vasoconstricton of pial vasculature in healthy rats (Experiment 1) and if M101 improves brain tissue oxygen (PbtO2) in rats with controlled cortical impact (CCI)-TBI (Experiment 2). M101 (12.5 mL/kg intravenous [IV] over 2 h) caused a mild (9 mm Hg) increase in the mean arterial blood pressure (MAP) of healthy rats without constriction of cerebral pial arterioles. M101 (12 mL/kg IV over 1 h) caused a modest (27 mm Hg) increase in MAP (peak, 123 ± 5 mm Hg [mean ± standard error of the mean]) of CCI-TBI rats and restored PbtO2 to near pre-injury levels. In both M101 and untreated control (NON) groups, PbtO2 was ∼30 ± 2 mm Hg pre-injury and decreased (p ≤ 0.05) to ∼16 ± 2 mm Hg 15 min after CCI. In NON, PbtO2 remained ∼50% of baseline but M101 administration resulted in a sustained increase in PbtO2 (peak, 25 ± 5 mm Hg), which was not significantly different from pre-injury until the end of the study, when it decreased again below pre-injury (but was still higher than NON). Histopathology showed no differences between groups. In conclusion, M101 increased systemic blood pressures without concurrent cerebral pial vasoconstriction (in healthy rats) and restored PbtO2 to 86% of pre-injury for at least 80 min when given soon after CCI-TBI. M101 should be evaluated in a clinically-relevant large animal model for pre-hospital treatment of TBI.


Subject(s)
Brain Injuries, Traumatic , Cerebrovascular Circulation/drug effects , Hemoglobins/pharmacology , Animals , Male , Rats , Rats, Sprague-Dawley
9.
J Funct Biomater ; 7(4)2016 Nov 18.
Article in English | MEDLINE | ID: mdl-27869709

ABSTRACT

Oxygen-carrying perfluorocarbon (PFC) fluids have the potential to increase tissue oxygenation during hypoxic states and to reduce ischemic cell death. Regulatory approval of oxygen therapeutics was halted due to concerns over vasoconstrictive side effects. The goal of this study was to assess the potential vasoactive properties of Perftoran by measuring brain pial arteriolar diameters in a healthy rat model. Perftoran, crystalloid (saline) or colloid (Hextend) solutions were administered as four sequential 30 min intravenous (IV) infusions, thus allowing an evaluation of cumulative dose-dependent effects. There were no overall changes in diameters of small-sized (<50 µm) pial arterioles within the Perftoran group, while both saline and Hextend groups exhibited vasoconstriction. Medium-sized arterioles (50-100 µm) showed minor (~8-9%) vasoconstriction within saline and Hextend groups and only ~5% vasoconstriction within the Perftoran group. For small- and medium-sized pial arterioles, the mean percent change in vessel diameters was not different among the groups. Although there was a tendency for arterial blood pressures to increase with Perftoran, pressures were not different from the other two groups. These data show that Perftoran, when administered to healthy anesthetized rats, does not cause additional vasoconstriction in cerebral pial arterioles or increase systemic blood pressure compared with saline or Hextend.

10.
Microvasc Res ; 107: 83-90, 2016 09.
Article in English | MEDLINE | ID: mdl-27287870

ABSTRACT

Sanguinate, a polyethylene glycol-conjugated carboxyhemoglobin, was investigated for cerebral vasoactivity in healthy male Sprague-Dawley rats (Study 1) and for its ability to increase brain tissue oxygen pressure (PbtO2) after controlled cortical impact (CCI) - traumatic brain injury (TBI) (Study 2). In both studies ketamine-acepromazine anesthetized rats were ventilated with 40% O2. In Study 1, a cranial window was used to measure the diameters of medium - (50-100µm) and small-sized (<50µm) pial arterioles before and after four serial infusions of Sanguinate (8mL/kg/h, cumulative 16mL/kg IV), volume-matched Hextend, or normal saline. In Study 2, PbtO2 was measured using a phosphorescence quenching method before TBI, 15min after TBI (T15) and then every 10min thereafter for 155min. At T15, rats received either 8mL/kg IV Sanguinate (40mL/kg/h) or no treatment (saline, 4mL/kg/h). Results showed: 1) in healthy rats, percentage changes in pial arteriole diameter were the same among the groups, 2) in TBI rats, PbtO2 decreased from 36.5±3.9mmHg to 19.8±3.0mmHg at T15 in both groups after TBI and did not recover in either group for the rest of the study, and 3) MAP increased 16±4mmHg and 36±5mmHg after Sanguinate in healthy and TBI rats, respectively, while MAP was unchanged in control groups. In conclusion, Sanguinate did not cause vasoconstriction in the cerebral pial arterioles of healthy rats but it also did not acutely increase PbtO2 when administered after TBI. Sanguinate was associated with an increase in MAP in both studies.


Subject(s)
Arterioles/drug effects , Brain Injuries, Traumatic/drug therapy , Carboxyhemoglobin/pharmacology , Cerebrovascular Circulation/drug effects , Oxygen Consumption/drug effects , Oxygen/metabolism , Pia Mater/blood supply , Plasma Substitutes/pharmacology , Polyethylene Glycols/pharmacology , Animals , Arterial Pressure/drug effects , Arterioles/metabolism , Arterioles/physiopathology , Brain Injuries, Traumatic/metabolism , Brain Injuries, Traumatic/physiopathology , Carboxyhemoglobin/analogs & derivatives , Carboxyhemoglobin/toxicity , Disease Models, Animal , Hydroxyethyl Starch Derivatives/pharmacology , Male , Microcirculation/drug effects , Plasma Substitutes/toxicity , Polyethylene Glycols/toxicity , Rats, Sprague-Dawley , Time Factors , Vasoconstriction/drug effects
11.
J Trauma Acute Care Surg ; 81(1): 101-7, 2016 07.
Article in English | MEDLINE | ID: mdl-26998778

ABSTRACT

BACKGROUND: There is inadequate information on the physiologic effects of aeromedical evacuation on wounded war fighters with traumatic brain injury (TBI). At altitudes of 8,000 ft, the inspired oxygen is lower than standard sea level values. In troops experiencing TBI, this reduced oxygen may worsen or cause secondary brain injury. We tested the hypothesis that the effects of prolonged aeromedical evacuation on critical neurophysiologic parameters (i.e., brain oxygenation [PbtO2]) of swine with a fluid percussion injury/TBI would be detrimental compared with ground (normobaric) transport. METHODS: Yorkshire swine underwent fluid percussion injury/TBI with pretransport stabilization before being randomized to a 4-hour aeromedical transport at simulated flight altitude of 8,000 ft (HYPO, n = 8) or normobaric ground transport (NORMO, n = 8). Physiologic measurements (i.e., PbtO2, cerebral perfusion pressure, intracranial pressure, regional cerebral blood flow, mean arterial blood pressure, and oxygen transport variables) were analyzed. RESULTS: Survival was equivalent between groups. Measurements were similar in both groups at all phases up to and including onset of flight. During the flight, PbtO2, cerebral perfusion pressure, and mean arterial blood pressure were significantly lower in the HYPO than in the NORMO group. At the end of flight, regional cerebral blood flow was lower in the HYPO than in the NORMO group. Other parameters such as intracranial pressure, cardiac output, and mean pulmonary artery pressure were not significantly different between the two groups. CONCLUSION: A 4-hour aeromedical evacuation at a simulated flight altitude of 8,000 ft caused a notable reduction in neurophysiologic parameters compared with normobaric conditions in this TBI swine model. Results suggest that hypobaric conditions exacerbate cerebral hypoxia and may worsen TBI in casualties already in critical condition.


Subject(s)
Air Ambulances , Altitude , Brain Injuries, Traumatic/physiopathology , Hypoxia, Brain/physiopathology , Animals , Brain Injuries, Traumatic/mortality , Cardiac Output , Cerebrovascular Circulation , Disease Models, Animal , Hypoxia, Brain/mortality , Intracranial Pressure , Oxygen/blood , Random Allocation , Survival Rate , Swine
12.
Int J Hematol ; 103(5): 584-91, 2016 May.
Article in English | MEDLINE | ID: mdl-26886450

ABSTRACT

UNLABELLED: While perfluorocarbons (PFCs) may be useful in some clinical situations, previous studies have shown that interferences with chemistry analytes can occur with blood samples containing PFCs. This in vitro study focused on how the PFC Oxycyte may affect hematology measurements in blood samples. Swine blood diluted with Oxycyte or saline (Controls) were analyzed for Hemoglobin (Hb), Mean Corpuscular Volume (MCV),Hematocrit (Hct) and Fluorocrit (Fct) using a HemaVet, ABL-735 (ABL), or microhematocrit. Ancillary tests (blood viscosity, electrolytes, cell counts, and red blood cell morphology) were performed secondarily. Increasing Oxycyte resulted in increases in MCV, Hct, and visible cell shape change and morphology vs. CONTROLS: Effects correlated with lower sodium in Oxycyte samples vs. CONTROLS: With increasing Oxycyte, Hb became higher than Controls or became unpredictable depending on the instrument (HemaVet or ABL, respectively). Fct was smaller than predicted and likely represented the heaviest components of Oxycyte. At ≥50 % Oxycyte, RBC hemolysis rendered further measurements impractical. Viscosity first increased then decreased with increasing Oxycyte, peaking at ~40 % Oxycyte. Hct, MCV, Hb, and RBC morphology may be affected by Oxycyte. These observations correlated with lower sodium and increasing Oxycyte, causing hemolysis at high Oxycyte concentrations. These changes were due to alterations in the blood samples in vitro and this should be considered when interpreting hematology parameters from in vivo studies.


Subject(s)
Blood Substitutes/pharmacology , Blood Viscosity/drug effects , Erythrocytes/drug effects , Fluorocarbons/pharmacology , Animals , Erythrocyte Indices/drug effects , Erythrocytes/cytology , Hematocrit , Hemoglobins/analysis , Hemolysis/drug effects , Swine
13.
Brain Res ; 1634: 132-139, 2016 Mar 01.
Article in English | MEDLINE | ID: mdl-26794250

ABSTRACT

BACKGROUND: Hypoxia is a critical secondary injury mechanism in traumatic brain injury (TBI), and early intervention to alleviate post-TBI hypoxia may be beneficial. NVX-108, a dodecafluoropentane perfluorocarbon, was screened for its ability to increase brain tissue oxygen tension (PbtO2) when administered soon after TBI. METHODS: Ketamine-acepromazine anesthetized rats ventilated with 40% oxygen underwent moderate controlled cortical impact (CCI)-TBI at time 0 (T0). Rats received either no treatment (NON, n=8) or 0.5 ml/kg intravenous (IV) NVX-108 (NVX, n=9) at T15 (15 min after TBI) and T75. RESULTS: Baseline cortical PbtO2 was 28±3 mm Hg and CCI-TBI resulted in a 46±6% reduction in PbtO2 at T15 (P<0.001). Significant differences in time-group interactions (P=0.013) were found when comparing either absolute or percentage change of PbtO2 to post-injury (mixed-model ANOVA) suggesting that administration of NVX-108 increased PbtO2 above injury levels while it remained depressed in the NON group. Specifically in the NVX group, PbtO2 increased to a peak 143% of T15 (P=0.02) 60 min after completion of NVX-108 injection (T135). Systemic blood pressure was not different between the groups. CONCLUSION: NVX-108 caused an increase in PbtO2 following CCI-TBI in rats and should be evaluated further as a possible immediate treatment for TBI.


Subject(s)
Brain Injuries, Traumatic/metabolism , Cerebral Cortex/drug effects , Cerebral Cortex/metabolism , Fluorocarbons/administration & dosage , Hypoxia/metabolism , Animals , Blood Pressure/drug effects , Brain Injuries, Traumatic/complications , Cerebral Cortex/injuries , Heart Rate/drug effects , Hypoxia/etiology , Hypoxia/prevention & control , Male , Partial Pressure , Rats , Rats, Sprague-Dawley
15.
J Funct Biomater ; 5(4): 246-58, 2014 Nov 18.
Article in English | MEDLINE | ID: mdl-25411852

ABSTRACT

The use of hemoglobin-based oxygen carriers (HBOC) as oxygen delivering therapies during hypoxic states has been hindered by vasoconstrictive side effects caused by depletion of nitric oxide (NO). OxyVita C is a promising oxygen-carrying solution that consists of a zero-linked hemoglobin polymer with a high molecular weight (~17 MDa). The large molecular weight is believed to prevent extravasation and limit NO scavenging and vasoconstriction. The aim of this study was to assess vasoactive effects of OxyVita C on systemic blood pressures and cerebral pial arteriole diameters. Anesthetized healthy rats received four intravenous (IV) infusions of an increasing dose of OxyVita C (2, 25, 50, 100 mg/kg) and hemodynamic parameters and pial arteriolar diameters were measured pre- and post-infusion. Normal saline was used as a volume-matched control. Systemic blood pressures increased (P ≤ 0.05) with increasing doses of OxyVita C, but not with saline. There was no vasoconstriction in small (<50 µm) and medium-sized (50-100 µm) pial arterioles in the OxyVita C group. In contrast, small and medium-sized pial arterioles vasoconstricted in the control group. Compared to saline, OxyVita C showed no cerebral vasoconstriction after any of the four doses evaluated in this rat model despite increases in blood pressure.

16.
Microvasc Res ; 95: 124-30, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25046829

ABSTRACT

The effects of a polymerized bovine hemoglobin-based oxygen carrier (HBOC) and two derivatives on arteriolar vasoactivity and tissue oxygen tension were explored by administering HBOC in a dose-response fashion to normovolemic rats. The effect of oxygen affinity (P50) and viscosity was also explored, where the P50 and viscosity of the parent compound (HBOC-201) and its modifications (MP50 and LP50A) were as follows: 40mmHg and 3.0cP (HBOC-20l); 18mmHg and 4.4cP (MP50); and 17mmHg and 12.1cP (LP50A). Anesthetized male Sprague-Dawley rats (N=32) were randomized to receive one of the HBOC solutions, and were administered four infusions that increased in concentration for each dose (2, 22, 230 and 780mg/kg, IV). Data were compared to rats receiving an equivalent volume for each of the four infusions (0.4, 0.4, 3.8, 13.1ml/kg, IV) of iso-oncotic 5.9% human serum albumin (HSA). Increasing doses of either HBOC solutions or HSA were associated with increasing MAP. Doses 3 and 4 of HBOC-201, MP50 and HSA produced significant increases in MAP, whereas similar increases began at a lower dose (Dose 2) with LP50A. There were no significant changes in arteriolar diameters at any dose for any group. Interstitial partial pressure of oxygen (ISF PO2) remained unchanged for HBOC-201, MP50 and HSA, but LP50A caused a significant decrease in ISF PO2 compared to baseline after Doses 3 and 4. In conclusion, there was no evidence that HBOC-201 would perform better with increased oxygen affinity (40 to 18mmHg) or viscosity (3.0 to 4.4cP).


Subject(s)
Blood Substitutes/pharmacology , Blood Viscosity/drug effects , Hemodynamics/drug effects , Hemoglobins/pharmacology , Microcirculation/drug effects , Muscle, Skeletal/blood supply , Oxygen/blood , Animals , Arterial Pressure/drug effects , Arterioles/drug effects , Arterioles/physiology , Blood Substitutes/administration & dosage , Blood Substitutes/metabolism , Dose-Response Relationship, Drug , Hemoglobins/administration & dosage , Hemoglobins/metabolism , Infusions, Intravenous , Male , Models, Animal , Rats, Sprague-Dawley , Time Factors
17.
Curr Drug Discov Technol ; 11(3): 220-6, 2014.
Article in English | MEDLINE | ID: mdl-25007887

ABSTRACT

NVX-108, a dodecafluoropentane-based perfluorocarbon (PFC) emulsion, has therapeutic potential as an oxygen- carrying fluid for emergency medical treatment for traumatic brain injury (TBI) and hemorrhagic shock. Potential cerebral vasoactive properties were assessed by directly measuring pial arteriolar vessel diameters before and after a 30 minute intravenous (IV) infusion of 1.0 ml/kg (high dose [H]) or 0.25 ml/kg (low dose [L]) NVX-108 compared to 2.0 ml/kg Saline (control) in healthy anesthetized rats (N = 6/group). Results showed that post-infusion vessel diameters for small (< 50 µm) and medium (50-100 µm)-sized pial arterioles were significantly (p < 0.05) narrower after only the NVX- 108 H infusion although this vasoconstriction was not statistically significant when analyzed as a percentage change in these vessels. Pial arteriolar vessel diameters were not significantly different for mean value or percentage change after either NVX-108 L or Saline infusions. There were no significant post-infusion changes from baseline in systolic, mean or diastolic blood pressures after any of the treatments although post-infusion blood pressure was statistically higher in the NVX-108 L group compared to NVX-108 H and Saline groups. Arterial blood gases, methemoglob in and lactate were not different from baseline or among groups. No adverse events were observed at either dose of NVX-108. In conclusion, neither 0.25 nor 1.0 ml/kg NVX-108 caused vasoconstriction in cerebral pial arterioles of healthy rats nor resulted in blood pressure changes; the compound should be considered for further investigation for TBI therapy.


Subject(s)
Cerebrovascular Circulation/drug effects , Fluorocarbons/pharmacology , Microvessels/drug effects , Animals , Cerebrovascular Circulation/physiology , Drug Evaluation, Preclinical/methods , Male , Microvessels/physiology , Rats , Rats, Sprague-Dawley
18.
Curr Drug Discov Technol ; 10(4): 315-24, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24074305

ABSTRACT

Hemoglobin-based oxygen carrier-201 (HBOC) was developed as a resuscitative fluid but concerns exist over potentially adverse vasoconstriction. This study evaluated whether concurrent IV (intra venous) N-acetyl-L-cysteine (NAC) or hyaluronic acid (HA) would attenuate HBOC-associated vasoconstriction, assessed by systemic blood pressures and cerebral pial microvasculature, when administered to healthy, anesthetized rats. Rats (8-9/group) received a 30 min infusion of 3 ml/kg HBOC, HBOC plus 600 mg/kg NAC (HBOC/NAC), HBOC plus 1.5 mg/kg HA (HBOC/HA) or 3 ml/kg Albumin. Mean (MAP) and systolic (SBP) blood pressures, blood chemistries and cerebral pial vessel diameters were measured at baseline, end of infusion, and intermittently for an additional 90 min. HBOC caused immediate and sustained increases in SBP and MAP (35.3 ± 3.6 and 29.1 ± 2.5 mm Hg peak increases above baseline, respectively; mean ± SEM) and immediate but progressive vasoconstriction (11 µm maximum reduction) in medium-sized (50-100 µm) pial arterioles. When NAC was co-administered, blood pressure changes were attenuated and vessel changes were abolished. Similar trends were noted with co-administration of HA but were not statistically different from HBOC-alone. Small-sized (< 50 µm) pial vessels and blood parameters showed no differences from baseline or among groups. No adverse clinical signs were observed. We demonstrated that it is possible for adjuvant drugs to reduce the vasoconstriction associated with HBOC-201. Coinfusion of the anti-oxidant NAC mitigated HBOC-201-associated increases in blood pressures and vasoconstriction in medium-sized cerebral pial vessels. The drag-reducing polymer HA may be more effective at a higher dose as a similar but non-significant trend was observed.


Subject(s)
Acetylcysteine/administration & dosage , Cerebral Arteries/drug effects , Hemoglobins/administration & dosage , Hyaluronic Acid/administration & dosage , Vasoconstriction/drug effects , Animals , Blood Pressure , Cerebral Arteries/physiology , Male , Rats , Rats, Sprague-Dawley
19.
Mil Med ; 178(5): 570-7, 2013 May.
Article in English | MEDLINE | ID: mdl-23756018

ABSTRACT

This study was designed to test the effect of top-load infusions of increasing doses of two versions of the novel, high molecular weight hemoglobin-based oxygen carrier, OxyVita and OxyVita C solution ([Hb] = 6 g/dL), on mean arterial pressure (MAP), arteriolar diameter, and tissue oxygenation. Experiments were carried out on 18 anesthetized male Sprague-Dawley rats in which microcirculatory observations were made on the spinotrapezius muscle. Intravenous infusions of four increasing doses of the OxyVita solutions (2, 22, 230, and 780 mg/kg) were made for each group, and a separate group of animals was used for volume control. Tissue oxygenation was measured as interstitial fluid (ISF) PO2 using phosphorescence quenching microscopy. Increasing doses of either OxyVita solution or Lactated Ringer's solution (LRS, volume control) were associated with increasing MAP. For LRS infusions, MAP returned to baseline between each incremental dose injected, whereas there was an incomplete return for either of the OxyVita solutions. ISF PO2 for OxyVita was significantly lower than that for either LRS or OxyVita C, whereas ISF PO2 for OxyVita C was never statistically different from LRS. There were no significant changes in arteriolar diameters for LRS and either of the OxyVita solutions.


Subject(s)
Hemodynamics/drug effects , Hemoglobins/administration & dosage , Hemorrhage/drug therapy , Animals , Cattle , Disease Models, Animal , Dose-Response Relationship, Drug , Hemorrhage/physiopathology , Infusions, Intravenous , Male , Microcirculation/drug effects , Rats , Rats, Sprague-Dawley , Vasoconstriction/drug effects
20.
Shock ; 39(2): 210-9, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23324891

ABSTRACT

Animal models of combined traumatic brain injury (TBI) and hemorrhagic shock (HS) suggest a benefit of hemoglobin-based oxygen carrier (HBOC)-based resuscitation, but their use remains controversial, and little is known of the specific effects of TBI and high-pressure (large arterial injury) bleeding on resuscitation. We examine the effect of TBI and aortic tear injury on low-volume HBOC resuscitation in a swine polytrauma model and hypothesize that HBOC-based resuscitation will improve survival in the setting of aortic tear regardless of the presence of TBI. Anesthetized swine subjected to HS with aortic tear with or without fluid percussion TBI underwent equivalent limited resuscitation with HBOC, lactated Ringer's solution, or HBOC + nitroglycerine (vasoattenuated HBOC) and were observed for 6 h. There was no independent effect of TBI on survival time after adjustment for fluid type, and there was no interaction between TBI and resuscitation fluid type. However, total catheter hemorrhage volume required to reach target shock blood pressure was less with TBI (14.0 mL · kg(-1) [confidence interval, 12.4-15.6 mL · kg(-1)]) versus HS only (21.0 mL · kg(-1) [confidence interval, 19.5-22.5 mL · kg(-1)]), with equivalent lactate accumulation. Traumatic brain injury did not affect survival in this polytrauma model, but less hemorrhage was required in the presence of TBI to achieve an equivalent degree of shock suggesting globally impaired cardiovascular response to hemorrhage in the presence of TBI. There was also no benefit of HBOC-based fluid resuscitation over lactated Ringer's solution, contrary to models using liver injury as the source of hemorrhage, considering wound location is of paramount importance when choosing resuscitation strategy.


Subject(s)
Blood Substitutes/therapeutic use , Brain Injuries/complications , Fluid Therapy/methods , Resuscitation/methods , Shock, Hemorrhagic/prevention & control , Animals , Female , Random Allocation , Survival Analysis , Sus scrofa
SELECTION OF CITATIONS
SEARCH DETAIL
...