Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Genome ; 44(3): 382-93, 2001 Jun.
Article in English | MEDLINE | ID: mdl-11444697

ABSTRACT

The citrus tristeza virus resistance gene (Ctv) is a single dominant gene in Poncirus trifoliata, a sexually compatible relative of citrus. To clone this gene, a bacterial artificial chromosome (BAC) library has been constructed from an individual plant that was homozygous for Ctv. This library contains 45,696 clones with an average insert size of 80 kb, corresponding to 9.6 genome equivalents. Screening of the BAC library with five chloroplast DNA probes indicated that 0.58% of the BAC clones contained chloroplast-derived inserts. The chromosome walk across the Ctv locus was initiated using three closely linked genetic markers: C19, AD8, and Z16. The walk has been completed and a contig of ca. 1.2 Mb was constructed. Based on new data, the genetic map in the Ctv region was revised, with Ctv being located between AD8-Z16 and C19 at distances of 1.2 and 0.6 cM, respectively. Utilizing DNA fragments isolated from the contig as RFLP markers, the Ctv locus was further mapped to a region of ca. 300 kb. This contig contains several putative disease-resistance genes similar to the rice Xa21 gene, the tomato Cf-2 gene, and the Arabidopsis thaliana RPS2 gene. This library will therefore allow cloning of Ctv and other putative disease-resistance genes.


Subject(s)
Chromosomes, Artificial, Bacterial/genetics , Citrus/genetics , Citrus/virology , Contig Mapping , Genes, Plant/genetics , Plant Diseases/genetics , Amino Acid Sequence , Chromosome Walking , Citrus/chemistry , Cloning, Molecular , DNA Fingerprinting , Genetic Linkage , Genetic Predisposition to Disease , Molecular Sequence Data , Plant Diseases/virology , Plant Proteins/chemistry , Plant Proteins/genetics , Plant Viruses/physiology , Sequence Alignment , Sequence Homology, Amino Acid
2.
Virology ; 269(1): 156-71, 2000 Mar 30.
Article in English | MEDLINE | ID: mdl-10725208

ABSTRACT

We have derived the genomic nucleotide sequence of an emerging virus, the Sugarcane yellow leaf virus (ScYLV), and shown that it produces one to two subgenomic RNAs. The family Luteoviridae currently includes the Luteovirus, Polerovirus, and Enamovirus genera. With the new ScYLV nucleotide sequence and existing Luteoviridae sequence information, we have utilized new phylogenetic and evolutionary methodologies to identify homologous regions of Luteoviridae genomes, which have statistically significant altered nucleotide substitution ratios and have produced a reconstructed phylogeny of the Luteoviridae. The data indicate that Pea enation mosaic virus-1 (PEMV-1), Soybean dwarf virus (SbDV), and ScYLV exhibit spatial phylogenetic variation (SPV) consistent with recombination events that have occurred between poleroviral and luteoviral ancestors, after the divergence of these two progenitor groups. The reconstructed phylogeny confirms a contention that a continuum in the derived sequence evolution of the Luteoviridae has been established by intrafamilial as well as extrafamilial RNA recombination and expands the database of recombinant Luteoviridae genomes that are currently needed to resolve better defined means for generic discrimination in the Luteoviridae (D'Arcy, C. J. and Mayo, M. 1997. Arch. Virol. 142, 1285-1287). The analyses of the nucleotide substitution ratios from a nucleotide alignment of Luteoviridae genomes substantiates the hypothesis that hot spots for RNA recombination in this virus family are associated with the known sites for the transcription of subgenomic RNAs (Miller et al. 1995. Crit. Rev. Plant Sci. 14, 179-211), and provides new information that might be utilized to better design more effective means to generate transgene-mediated host resistance.


Subject(s)
Genome, Viral , Luteovirus/genetics , Luteovirus/isolation & purification , Phylogeny , Plants/virology , Recombination, Genetic/genetics , Amino Acid Sequence , Base Sequence , Cloning, Molecular , Consensus Sequence/genetics , Evolution, Molecular , Genetic Variation/genetics , Luteovirus/chemistry , Luteovirus/enzymology , Molecular Sequence Data , Open Reading Frames/genetics , Peptides/chemistry , Peptides/genetics , RNA, Viral/genetics , Sequence Alignment , Viral Proteins/chemistry , Viral Proteins/genetics
3.
Virology ; 250(2): 302-15, 1998 Oct 25.
Article in English | MEDLINE | ID: mdl-9792841

ABSTRACT

The vaccinia virus E3L gene product, pE3, is a dsRNA binding protein that prevents activation of the interferon-induced, dsRNA-activated protein kinase, PKR. Activation of PKR, which results in phosphorylation of the translation initiation factor, eIF2alpha, leads to the inhibition of protein synthesis, a process involved in defense against virus infection. The E3L gene product has a conserved dsRNA binding domain (DRBD) in its carboxyl-terminal region and has been shown to function in vitro by sequestration of dsRNA. We have utilized in vitro binding assays and the yeast two-hybrid system to demonstrate direct interactions of pE3 with PKR. By these methods, we demonstrate that pE3 interacts with two distinct regions in PKR, the amino-terminal (amino acids 1-99) located in the regulatory domain and the carboxyl-terminal (amino acids 367-523) located in the catalytic domain. The amino-terminal region of PKR that interacts with pE3 contains a conserved DRBD, suggesting that PKR can form nonfunctional heterodimers with pE3, analogous to those seen with other dsRNA binding proteins. Interaction of pE3 with the amino-terminal region of PKR is enhanced by dsRNA. In contrast, dsRNA reduces the interaction of pE3 with the carboxyl-terminal region of PKR. Competition experiments demonstrate that the carboxyl-terminal region of PKR, to which pE3 binds, overlaps the region with which eIF2alpha and the pseudosubstrate pK3 interact, suggesting that pE3 may also prevent PKR activation by masking the substrate binding domain. Like pE3, the amino-terminal region of PKR also interacts with the carboxyl-terminal domain of PKR. These interactions increase our understanding of the mechanisms by which pE3 downregulates PKR. In addition, the PKR-PKR interactions observed leads us to suggest a novel autoregulatory mechanism for activation of PKR in which dsRNA binding to the DRBD(s) induces a conformational change that results in release of the amino terminal region from the substrate binding domain, allowing access to eIF2alpha and its subsequent phosphorylation.


Subject(s)
RNA-Binding Proteins/metabolism , Vaccinia virus/metabolism , Viral Proteins/metabolism , eIF-2 Kinase/metabolism , Binding Sites , Binding, Competitive , Catalysis , HeLa Cells , Humans , Nucleic Acid Hybridization , RNA, Double-Stranded/metabolism , Saccharomyces cerevisiae , Sulfur Radioisotopes
4.
Plant Mol Biol ; 23(2): 279-86, 1993 Oct.
Article in English | MEDLINE | ID: mdl-7693020

ABSTRACT

Dehydrins are characterized by the consensus KIKEKLPG amino acid sequence found near the carboxy terminus, and usually repeated from one to many times within the protein. A synthetic peptide containing this consensus sequence was used to produce specific antibodies that recognize dehydrins in a wide range of plants. This range covered two families of monocots, viz. Gramineae (Hordeum vulgare L., Triticum aestivum L., Zea mays L., Oryza sativa L.) and Liliaceae (Allium sativa L.), and five families of dicots, Malvaceae (Gossypium hirsutum L.), Solanaceae (Lycopersicon esculentum L.), Brassicaceae (Raphanus sativus L.), Fabaceae (Vigna unguiculata L.), and Cucurbitaceae (Cucumis sativus L.). Two families of gymnosperms, Pinaceae (Pinus edulis Engelm.) and Ginkgoaceae (Ginkgo biloba L.), were also included. For several plants in which dehydrin cDNA and genomic clones have previously been characterized, it now appears that the dehydrin family of proteins is larger, and the regulation of dehydrin expression much more complex, than earlier studies have shown.


Subject(s)
Epitopes , Peptide Fragments/immunology , Plant Proteins/analysis , Plant Proteins/immunology , Plants/chemistry , Amino Acid Sequence , Consensus Sequence , Hordeum/chemistry , Molecular Sequence Data , Species Specificity , Tissue Distribution
5.
Plant Cell ; 1(7): 699-705, 1989 Jul.
Article in English | MEDLINE | ID: mdl-12359906

ABSTRACT

We have constructed a restriction fragment length polymorphism (RFLP) linkage map of the nuclear genome of the small flowering plant Arabidopsis thaliana. The map is based on the meiotic segregation of both RFLP and morphological genetic markers from five independent crosses. The morphological markers on each of the five chromosomes were included in the crosses to allow alignment of the RFLP map with the established genetic map. The map contains 94 new randomly distributed molecular markers (nine identified cloned Arabidopsis genes and 85 genomic cosmid clones) that detect polymorphisms between the Landsberg erecta and Columbia races. In addition, 17 markers from an independently constructed RFLP map of the Arabidopsis genome [Chang, C., Bowman, J.L., DeJohn, A.W., Lander, E.S., and Meyerowitz, E.M. (1988). Proc. Natl. Acad. Sci. USA 85, 6856-6860] have been included to permit integration of the two RFLP maps.

SELECTION OF CITATIONS
SEARCH DETAIL
...