Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Agric Food Chem ; 69(32): 9208-9219, 2021 Aug 18.
Article in English | MEDLINE | ID: mdl-34346216

ABSTRACT

Flavonoids play a key role in the regulation of plant-plant and plant-microbe interactions, and factors determining their release have been investigated in most of the common forage legumes. However, little is known about the response of flavonoid production and release to co-cultivation with other crop species. This study investigated alterations in the concentration of flavonoids in plant tissues and root exudates in four legumes [alfalfa (Medicago sativa L.), black medic (Medicago polymorpha L.), crimson clover (Trifolium incarnatum L.), and subterranean clover (Trifolium subterraneum L.)] co-cultivated with durum wheat [Triticum turgidum subsp. durum (Desf.) Husn.]. For this purpose, we carried out two experiments in a greenhouse, one with glass beads as growth media for root exudate extraction and one with soil as growth media for flavonoid detection in shoot and root biomass, using LC-MS/MS analysis. This study revealed that interspecific competition with wheat negatively affected legume growth and led to a significant reduction in shoot and root biomass compared with the same legume species grown in monoculture. In contrast, the concentration of flavonoids significantly increased both in legume biomass and in root exudates. Changes in flavonoid concentration involved daidzein, genistein, medicarpin, and formononetin, which have been found to be involved in legume nodulation and regulation of plant-plant interaction. We hypothesize that legumes responded to the co-cultivation with wheat by promoting nodulation and increasing exudation of allelopathic compounds, respectively, to compensate for the lack of nutrients caused by the presence of wheat in the cultivation system and to reduce the competitiveness of neighboring plants. Future studies should elucidate the bioactivity of flavonoid compounds in cereal-legume co-cultivation systems and their specific role in the nodulation process and inter-specific plant interactions such as potential effects on weeds.


Subject(s)
Fabaceae , Flavonoids , Chromatography, Liquid , Plant Roots , Tandem Mass Spectrometry
2.
PLoS One ; 15(9): e0238916, 2020.
Article in English | MEDLINE | ID: mdl-32941477

ABSTRACT

BACKGROUND: Field margins are ecologically important to an agroecosystem as they are a source of biodiversity. They can be composed of a diverse flora which may offer resources to a wide range of insects and birds. The vegetation composition of field margins is determined by soil characteristics, management, and landscape structures. However, little is known about the effect of individual field margin components such as ditches, grass strips, shrubs and trees, and the overall margin's complexity, on the vegetation composition and its functional effect and response traits. METHODS: This paper reports on the effects of field margin component typology (ditches, grass strips, shrubs, trees, and vehicle tracks) and complexity (the number of components), on the herbaceous vegetation of field margins. Forty field margins were sampled in 2016 in a 200 ha. organic mixed arable livestock farm. RESULTS: The factor which was identified as having the most effect on vegetation composition was adjacent land-use type, which reflected the margins' management regime. However, field margin components were found to affect vegetation response and effect traits. Tree components had less grassweeds than vehicle tracks while more complex field margins also had less grassweeds than simple field margins near cropped fields, most likely due to the lower availability in light and less disturbance from vehicles. Simple grassy margins produced a high proportion of hymenoptera flowers. DISCUSSION: These results highlight the importance of field margin components in maintaining a high diversity of vegetation typologies differing in effect traits that are relevant for the provisioning of ecosystem services, such as supporting pollen and nectar requirements of beneficial insects, as well as their importance in determining the presence of weed species that could potentially invade the cropped fields.


Subject(s)
Agriculture/methods , Poaceae/growth & development , Trees/growth & development , Animals , Biodiversity , Birds/physiology , Conservation of Natural Resources , Insecta/physiology , Italy , Plant Weeds/growth & development
3.
Biomolecules ; 10(6)2020 06 12.
Article in English | MEDLINE | ID: mdl-32545484

ABSTRACT

Copper is an essential nutrient for plants, animals, and humans because it is an indispensable component of several essential proteins and either lack or excess are harmful to human health. Recent studies revealed that the breakdown of the regulation of copper homeostasis could be associated with Alzheimer's disease (AD), the most common form of dementia. Copper accumulation occurs in human aging and is thought to increase the risk of AD for individuals with a susceptibility to copper exposure. This review reports that one of the leading causes of copper accumulation in the environment and the human food chain is its use in agriculture as a plant protection product against numerous diseases, especially in organic production. In the past two decades, some countries and the EU have invested in research to reduce the reliance on copper. However, no single alternative able to replace copper has been identified. We suggest that agroecological approaches are urgently needed to design crop protection strategies based on the complementary actions of the wide variety of crop protection tools for disease control.


Subject(s)
Agriculture/methods , Alzheimer Disease/etiology , Copper/metabolism , Copper/pharmacology , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Animals , Brain/metabolism , Food Chain , Homeostasis/physiology , Humans , Risk Factors
5.
Insects ; 11(3)2020 Mar 20.
Article in English | MEDLINE | ID: mdl-32244905

ABSTRACT

Invertebrates perform many vital functions in agricultural production, but many taxa are in decline, including pest natural enemies. Action is needed to increase their abundance if more sustainable agricultural systems are to be achieved. Conservation biological control (CBC) is a key component of integrated pest management yet has failed to be widely adopted in mainstream agriculture. Approaches to improving conservation biological control have been largely ad hoc. Two approaches are described to improve this process, one based upon pest natural enemy ecology and resource provision while the other focusses on the ecosystem service delivery using the QuESSA (Quantification of Ecological Services for Sustainable Agriculture) project as an example. In this project, a predictive scoring system was developed to show the potential of five seminatural habitat categories to provide biological control, from which predictive maps were generated for Europe. Actual biological control was measured in a series of case studies using sentinel systems (insect or seed prey), trade-offs between ecosystem services were explored, and heatmaps of biological control were generated. The overall conclusion from the QuESSA project was that results were context specific, indicating that more targeted approaches to CBC are needed. This may include designing new habitats or modifying existing habitats to support the types of natural enemies required for specific crops or pests.

6.
Ecol Lett ; 22(7): 1083-1094, 2019 Jul.
Article in English | MEDLINE | ID: mdl-30957401

ABSTRACT

Managing agricultural landscapes to support biodiversity and ecosystem services is a key aim of a sustainable agriculture. However, how the spatial arrangement of crop fields and other habitats in landscapes impacts arthropods and their functions is poorly known. Synthesising data from 49 studies (1515 landscapes) across Europe, we examined effects of landscape composition (% habitats) and configuration (edge density) on arthropods in fields and their margins, pest control, pollination and yields. Configuration effects interacted with the proportions of crop and non-crop habitats, and species' dietary, dispersal and overwintering traits led to contrasting responses to landscape variables. Overall, however, in landscapes with high edge density, 70% of pollinator and 44% of natural enemy species reached highest abundances and pollination and pest control improved 1.7- and 1.4-fold respectively. Arable-dominated landscapes with high edge densities achieved high yields. This suggests that enhancing edge density in European agroecosystems can promote functional biodiversity and yield-enhancing ecosystem services.


Subject(s)
Biodiversity , Crops, Agricultural , Ecosystem , Agriculture , Animals , Europe , Pollination
7.
PLoS One ; 13(9): e0203990, 2018.
Article in English | MEDLINE | ID: mdl-30260974

ABSTRACT

In Europe, the surface devoted to sunflower cultivation has expanded by ∼ 26% from 2006 to 2016. Theoretically, this implies an increasing demand for pollinators, while at the same time, scientific reports claim that pollinator communities worldwide are threatened by multiple stressors such as agrochemicals, the loss of suitable habitats and habitat fragmentation. However, the question that arises is whether insect pollination is still relevant for modern sunflower varieties that are often highly self-fertile. Following recent studies which demonstrate that surrounding land use composition may affect ecosystem service provisioning in cropped fields, this study aims at re-examining the pollination status of sunflower while disentangling the effects of local and landscape variables on sunflower seed set and oil content in Central Italy. Commercial cultivars, regardless of their degree of self-fertility, showed increased seed set and oil content when receiving adequate amounts of cross-pollination; oil composition, though, was not affected by cross-pollination events. Honey bees accounted for the vast majority of pollinators ensuring an overall adequate pollination. Sunflower seed set was higher in fields surrounded by landscapes containing a greater abundance of beehives, early flowering crops, urban areas and woody linear elements; conversely, seed set was lower where herbaceous semi-natural habitats dominated the surrounding landscape. This information is necessary for a science-based planning of agricultural policies and shows that, despite the adoption of self-fertile cultivars, sunflower still benefits from insect pollination and land use planning may affect crop productivity.


Subject(s)
Helianthus/physiology , Pollination/physiology , Animals , Bees , Crops, Agricultural/physiology , Ecosystem , Helianthus/growth & development , Italy , Mediterranean Region , Seeds/growth & development
8.
Pest Manag Sci ; 72(9): 1638-51, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27178745

ABSTRACT

Different semi-natural habitats occur on farmland, and it is the vegetation's traits and structure that subsequently determine their ability to support natural enemies and their associated contribution to conservation biocontrol. New habitats can be created and existing ones improved with agri-environment scheme funding in all EU member states. Understanding the contribution of each habitat type can aid the development of conservation control strategies. Here we review the extent to which the predominant habitat types in Europe support natural enemies, whether this results in enhanced natural enemy densities in the adjacent crop and whether this leads to reduced pest densities. Considerable variation exists in the available information for the different habitat types and trophic levels. Natural enemies within each habitat were the most studied, with less information on whether they were enhanced in adjacent fields, while their impact on pests was rarely investigated. Most information was available for woody and herbaceous linear habitats, yet not for woodland which can be the most common semi-natural habitat in many regions. While the management and design of habitats offer potential to stimulate conservation biocontrol, we also identified knowledge gaps. A better understanding of the relationship between resource availability and arthropod communities across habitat types, the spatiotemporal distribution of resources in the landscape and interactions with other factors that play a role in pest regulation could contribute to an informed management of semi-natural habitats for biocontrol. © 2016 Society of Chemical Industry.


Subject(s)
Arthropods , Conservation of Natural Resources , Ecosystem , Pest Control, Biological , Plant Weeds , Animals , Europe
SELECTION OF CITATIONS
SEARCH DETAIL
...