Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Can J Microbiol ; 52(7): 664-72, 2006 Jul.
Article in English | MEDLINE | ID: mdl-16917523

ABSTRACT

The amino acid sequence of the phage infection protein (Pip) of Lactococcus lactis predicts a multiple-membrane-spanning region, suggesting that Pip may be anchored to the plasma membrane. However, a near-consensus sortase recognition site and a cell wall anchoring motif may also be present near the carboxy terminus. If functional, this recognition site could lead to covalent linkage of Pip to the cell wall. Pip was detected in both plasma membranes and envelopes (plasma membrane plus peptidoglycan) isolated from the wild-type Pip strain LM2301. Pip was firmly attached to membrane and envelope preparations and was solubilized only by treatment with detergent. Three mutant Pip proteins were separately made in which the multiple-membrane-spanning region was deleted (Pip-Deltammsr), the sortase recognition site was converted to the consensus (Pip-H841G), or the sortase recognition site was deleted (Pip-Delta6). All three mutant Pip proteins co-purified with membranes and could not be solubilized except with detergent. When membranes containing Pip-Deltammsr were sonicated and re-isolated by sucrose density gradient centrifugation, Pip-Deltammsr remained associated with the membranes. Strains that expressed Pip-H841G or Pip-Delta6 formed plaques with near unit efficiency, whereas the strain that expressed Pip-Deltammsr did not form plaques of phage c2. Both membranes and cell-free culture supernatant from the strain expressing Pip-Deltammsr inactivated phage c2. These results suggest that Pip is an integral membrane protein that is not anchored to the cell wall and that the multiple-membrane-spanning region is required for productive phage infection but not phage inactivation.


Subject(s)
Bacterial Proteins/analysis , Lactococcus lactis/chemistry , Membrane Proteins/physiology , Animals , Bacterial Proteins/chemistry , Bacterial Proteins/physiology , Bacteriophages/metabolism , Blotting, Western/methods , Cell Membrane/chemistry , Lactococcus lactis/cytology , Lactococcus lactis/virology , Membrane Proteins/analysis , Membrane Proteins/chemistry , Rabbits
2.
J Proteome Res ; 4(4): 1403-12, 2005.
Article in English | MEDLINE | ID: mdl-16083293

ABSTRACT

A mass tagging approach is described for mitochondrial thiol proteins under nondenaturing conditions. This approach utilizes stable isotope-coded, thiol-reactive (4-iodobutyl)triphenylphosphonium (IBTP) reagents, i.e., the isotopomers IBTP-d(0) and IBTP-d(15). The mass spectrometric properties of IBTP-labeled peptides were evaluated using an ESI-q-TOF and a MALDI-TOF/TOF instrument. High energy collision induced dissociation (CID) in the TOF/TOF instrument caused side-chain fragmentation in the butyltriphenylphosphonium moiety-containing Cys-residue. By contrast, low energy CID in the qTOF instrument yielded sequence tags of IBTP-labeled peptides that were suitable for automated database searching. The IBTP labeling strategy was then applied to the analysis of a protein extract obtained from cardiac mitochondria. The relative abundance measurements for identified IBTP-labeled peptides showed an average variability for peptide quantitation of approximately 10% based on peak area ratios of ion signals for the d(0)/d(15)-tagged peptide pairs. The reactivity of the IBTP reagents was further studied by molecular modeling and visualization. The present study suggests that the IBTP reagent seems to show a bias toward highly surface-exposed protein thiols. Hence, the described mass tagging approach might become potentially useful in redox proteomics studies designed to identify protein thiols that are particularly prone to oxidative modifications.


Subject(s)
Mitochondrial Proteins/chemistry , Peptides/chemistry , Sulfhydryl Compounds/chemistry , Amino Acid Sequence , Animals , Lactoglobulins/chemistry , Lactoglobulins/genetics , Mass Spectrometry/methods , Mitochondria, Heart/chemistry , Mitochondrial Proteins/genetics , Models, Molecular , Molecular Sequence Data , Molecular Structure , Molecular Weight , Organophosphorus Compounds/chemistry , Oxidation-Reduction , Peptides/genetics , Rats , Reproducibility of Results , Thioredoxins/chemistry , Thioredoxins/genetics
3.
J Biol Chem ; 279(20): 21121-7, 2004 May 14.
Article in English | MEDLINE | ID: mdl-14985331

ABSTRACT

The current model of immune activation in Drosophila melanogaster suggests that fungi and Gram-positive (G(+)) bacteria activate the Toll/Dif pathway and that Gram-negative (G(-)) bacteria activate the Imd/Relish pathway. To test this model, we examined the response of Relish and Dif (Dorsal-related immunity factor) mutants to challenge by various fungi and G(+) and G(-) bacteria. In Relish mutants, the Cecropin A gene was induced by the G(+) bacteria Micrococcus luteus and Staphylococcus aureus, but not by other G(+) or G(-) bacteria. This Relish-independent Cecropin A induction was blocked in Dif/Relish double mutant flies. Induction of the Cecropin A1 gene by M. luteus required Relish, whereas induction of the Cecropin A2 gene required Dif. Intact peptidoglycan (PG) was necessary for this differential induction of Cecropin A. PG extracted from M. luteus induced Cecropin A in Relish mutants, whereas PGs from the G(+) bacteria Bacillus megaterium and Bacillus subtilis did not, suggesting that the Drosophila immune system can distinguish PGs from various G(+) bacteria. Various fungi stimulated antimicrobial peptides through at least two different pathways requiring Relish and/or Dif. Induction of Attacin A by Geotrichum candidum required Relish, whereas activation by Beauvaria bassiana required Dif, suggesting that the Drosophila immune system can distinguish between at least these two fungi. We conclude that the Drosophila immune system is more complex than the current model. We propose a new model to account for this immune system complexity, incorporating distinct pattern recognition receptors of the Drosophila immune system, which can distinguish between various fungi and G(+) bacteria, thereby leading to selective induction of antimicrobial peptides via differential activation of Relish and Dif.


Subject(s)
DNA-Binding Proteins/metabolism , Drosophila melanogaster/microbiology , Drosophila melanogaster/physiology , Fungi/physiology , Gram-Positive Bacteria/physiology , Transcription Factors/metabolism , Animals , Antimicrobial Cationic Peptides/biosynthesis , Antimicrobial Cationic Peptides/genetics , Cell Wall/physiology , DNA-Binding Proteins/genetics , Drosophila Proteins/metabolism , Gene Expression Regulation/physiology , Mutagenesis , NF-kappa B/metabolism , Transcription Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...