Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Entomol ; 52(6): 1082-1094, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37827520

ABSTRACT

Host-plant phenology can directly and indirectly mediate the abundance of insect herbivores. Our objective was to determine how host-plant flowering phenology shapes a facultative ant-lycaenid mutualism. The focus of our research was the hops azure, Celastrina humulus Scott & D. Wright, a rare species whose larvae feed on the pollen-bearing inflorescences of Humulus lupulus var. neomexicanus. We used several approaches to evaluate the role of host-plant flowering phenology in this system. First, we monitored larvae over three study years (2020-2022) to parse the role of host-plant flowering phenology and other factors in shaping the likelihood of ant tending. Second, we tested larval performance at various phenological stages of the host plant. We also quantified variation in soluble proteins and secondary metabolites among inflorescences at varying phenological stages. Lastly, we treated artificial sugar-protein baits with extracts from different phenological stages of the host plant; this allowed us to assess how chemical variation among stages could impact ant recruitment. Monitoring results revealed that the likelihood of ant tending was lowest for larvae on host plants with early-stage inflorescences. These floral stages had the greatest concentrations of both soluble proteins and α-acids (humulone and cohumulone), and in the feeding trial, early-stage flowers enabled greater weight gain for larvae. However, extracts from early-stage flowers reduced ant recruitment to sugar-protein baits. Altogether, these results suggest that early-stage inflorescences enhance larval growth while also reducing the recruitment of mutualist ants. This shows an indirect mechanism whereby changing host-plant phenology can mediate herbivore populations through interactions with ants.


Subject(s)
Ants , Butterflies , Humulus , Animals , Symbiosis , Larva , Plants , Sugars
2.
MethodsX ; 7: 101050, 2020.
Article in English | MEDLINE | ID: mdl-32963972

ABSTRACT

Past analyses of sugar and amino acid composition of aphid honeydews have been completed using diverse instrumentation. Here we report the use of hydrophilic interaction liquid chromatography (HILIC) coupled with a triple quadrupole mass spectrometric (MS/MS) detector for the analysis of seven saccharides (xylose, fructose, glucose, sucrose, trehalose, melezitose and raffinose) and five amino acids (glutamic acid, glutamine, aspartic acid, serine, and asparagine). Limits of quantitation ranged from 0.05 mg/L (melezitose) to 1.0 mg/L (fructose) for sugars and from 0.10 mg/L (glutamic acid) to 3.66 mg/L (asparagine) for amino acids. Sample preparation was fast and simple, requiring only the washing of foils used to collect aphid honeydew with hot (80 °C) water and sonication of samples prior to HILIC/MS/MS analysis for both classes of analytes. No analyte derivatization was required and excellent chromatographic characteristics were observed. For those studying honeydew-mediated interactions in the field, this technique allows for rapid characterization of ecologically important amino acids and sugars.•Composition of seven saccharides in Aphis asclepiadis honeydew including xylose, fructose, glucose, sucrose, trehalose, melezitose,and raffinose, and five standard amino acids including glutamic acid, glutamine, aspartic acid, serine, and asparagine, were analyzed using hydrophilic interaction liquid chromatography-mass spectrometry.•All polar analytes were analyzed without derivatization using HILIC-MS with chromatographic run times of 7 min (sugars) and 10 min (amino acids).

3.
Oecologia ; 185(2): 181-190, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28891026

ABSTRACT

Climate change can influence the abundance of insect herbivores through direct and indirect mechanisms. In this study, we evaluated multitrophic drivers of herbivore abundance for an aphid species (Aphis helianthi) in a subalpine food web consisting of a host plant (Ligusticum porteri), mutualist ants and predatory lygus bugs (Lygus spp.). We used a model-selection approach to determine which climate and host plant cues best predict year-to-year variation in insect phenology and abundance observed over 6 years. We complemented this observational study with experiments that determined how elevated temperature interacts with (1) host plant phenology and (2) the ant-aphid mutualism to determine aphid abundance. We found date of snowmelt to be the best predictor of yearly abundance of aphid and lygus bug abundance but the direction of this effect differed. Aphids achieved lower abundances in early snowmelt years likely due to increased abundance of lygus bug predators in these years. Elevating temperature of L. porteri flowering stalks reduced their quality as hosts for aphid populations. However, warming aphid colonies on host plants of similar quality increased population growth rates. Importantly, this effect was apparent even in the absence of ants. While we observed fewer ants tending colonies at elevated temperatures, these colonies also had reduced numbers of lygus bug predators. This suggests that mutualism with ants becomes less significant as temperature increases, which contrasts other ant-hemipteran systems. Our observational and experimental results show the importance of multitrophic species interactions for predicting the effect of climate change on the abundances of herbivores.


Subject(s)
Climate Change , Food Chain , Herbivory , Animals , Ants , Aphids , Hot Temperature/adverse effects , Plants , Population Density , Symbiosis
4.
Ecol Lett ; 19(1): 37-44, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26563752

ABSTRACT

Species abundance is typically determined by the abiotic environment, but the extent to which such effects occur through the mediation of biotic interactions, including mutualisms, is unknown. We explored how light environment (open meadow vs. shaded understory) mediates the abundance and ant tending of the aphid Aphis helianthi feeding on the herb Ligusticum porteri. Yearly surveys consistently found aphids to be more than 17-fold more abundant on open meadow plants than on shaded understory plants. Manipulations demonstrated that this abundance pattern was not due to the direct effects of light environment on aphid performance, or indirectly through host plant quality or the effects of predators. Instead, open meadows had higher ant abundance and per capita rates of aphid tending and, accordingly, ants increased aphid population growth in meadow but not understory environments. The abiotic environment thus drives the abundance of this herbivore exclusively through the mediation of a protection mutualism.


Subject(s)
Ants/physiology , Aphids/physiology , Herbivory , Sunlight , Symbiosis , Animals , Colorado , Ligusticum , Population Density , Predatory Behavior
5.
Ann N Y Acad Sci ; 1286: 62-91, 2013 May.
Article in English | MEDLINE | ID: mdl-23398402

ABSTRACT

American ginseng (Panax quinquefolius L.) is an uncommon to rare understory plant of the eastern deciduous forest. Harvesting to supply the Asian traditional medicine market made ginseng North America's most harvested wild plant for two centuries, eventually prompting a listing on CITES Appendix II. The prominence of this representative understory plant has led to its use as a phytometer to better understand how environmental changes are affecting many lesser-known species that constitute the diverse temperate flora of eastern North America. We review recent scientific findings concerning this remarkable phytometer species, identifying factors through its history of direct and indirect interactions with humans that have led to the current condition of the species. Harvest, deer browse, and climate change effects have been studied in detail, and all represent unique interacting threats to ginseng's long-term persistence. Finally, we synthesize our current understanding by portraying ginseng's existence in thousands of small populations, precariously poised to either escape or be drawn further toward extinction by the actions of our own species.


Subject(s)
Endangered Species/legislation & jurisprudence , Panax/growth & development , Plant Leaves/growth & development , Animals , Climate Change , Ecosystem , Herbivory , Humans , Medicine, East Asian Traditional , Phytotherapy/trends , Seed Dispersal , Seedlings/growth & development , United States
6.
Am J Bot ; 94(10): 1677-87, 2007 Oct.
Article in English | MEDLINE | ID: mdl-21636364

ABSTRACT

For rare plants, self-pollination and inbreeding can increase in small populations, while unusual levels of outcrossing can occur through restoration efforts. To study both inbreeding and outcrossing, we performed experimental pollinations using Panax quinquefolius (American ginseng), a wild-harvested plant with a mixed mating system. For inbreeding, plants were either cross-pollinated within the population or self-pollinated, which resulted in a higher proportion of seeds from self-pollinated flowers. For outcrossing, wild plants were either cross-pollinated within the population or with cultivated plants from West Virginia or Wisconsin. Offspring of all crosses were followed for 4 yr. Two-yr-old seedlings from self-pollination had 45% smaller leaf areas and 33% smaller heights relative to those from cross-pollination. Leaf area is a positive predictor of longer-term survival in wild populations. Our results suggest inbreeding depression, which is unexpected in this self-fertile species. Seedlings from crosses with cultivated plants had 127% greater leaf area and 165% greater root biomass relative to outcrosses within the population. The accelerated growth suggests genetic differences between wild and cultivated populations, but outbreeding depression may not appear until later generations. Assessment of the ultimate fitness consequences of introducing cultivated genotypes requires monitoring over longer time periods.

SELECTION OF CITATIONS
SEARCH DETAIL
...