Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Malar J ; 15: 116, 2016 Feb 24.
Article in English | MEDLINE | ID: mdl-26911594

ABSTRACT

BACKGROUND: Emergence of drug-resistant Plasmodium falciparum has created an urgent need for new drug targets. DNA polymerase δ is an essential enzyme required for chromosomal DNA replication and repair, and therefore may be a potential target for anti-malarial drug development. However, little is known of the characteristics and function of this P. falciparum enzyme. METHODS: The coding sequences of DNA polymerase δ catalytic subunit (PfPolδ-cat), DNA polymerase δ small subunit (PfPolδS) and proliferating cell nuclear antigen (PfPCNA) from chloroquine- and pyrimethamine-resistant P. falciparum strain K1 were amplified, cloned into an expression vector and expressed in Escherichia coli. The recombinant proteins were analysed by SDS-PAGE and identified by LC-MS/MS. PfPolδ-cat was biochemically characterized. The roles of PfPolδS and PfPCNA in PfPolδ-cat function were investigated. In addition, inhibitory effects of 11 compounds were tested on PfPolδ-cat activity and on in vitro parasite growth using SYBR Green I assay. RESULTS: The purified recombinant protein PfPolδ-cat, PfPolδS and PfPCNA showed on SDS-PAGE the expected size of 143, 57 and 34 kDa, respectively. Predicted amino acid sequence of the PfPolδ-cat and PfPolδS had 59.2 and 24.7 % similarity respectively to that of the human counterpart. The PfPolδ-cat possessed both DNA polymerase and 3'-5' exonuclease activities. It used both Mg(2+) and Mn(2+) as cofactors and was inhibited by high KCl salt (>200 mM). PfPolδS stimulated PfPolδ-cat activity threefolds and up to fourfolds when PfPCNA was included in the assay. Only two compounds were potent inhibitors of PfPolδ-cat, namely, butylphenyl-dGTP (BuPdGTP; IC50 of 38 µM) and 7-acetoxypentyl-(3, 4 dichlorobenzyl) guanine (7-acetoxypentyl-DCBG; IC50 of 55 µM). The latter compound showed higher inhibition on parasite growth (IC50 of 4.1 µM). CONCLUSIONS: Recombinant PfPolδ-cat, PfPolδS and PfPCNA were successfully expressed and purified. PfPolS and PfPCNA increased DNA polymerase activity of PfPolδ-cat. The high sensitivity of PfPolδ to BuPdGTP can be used to differentiate parasite enzyme from mammalian and human counterparts. Interestingly, 7-acetoxypentyl-DCBG showed inhibitory effects on both enzyme activity and parasite growth. Thus, 7-acetoxypentyl-DCBG is a potential candidate for future development of a new class of anti-malarial agents targeting parasite replicative DNA polymerase.


Subject(s)
DNA Polymerase III/chemistry , DNA Polymerase III/metabolism , Plasmodium falciparum/enzymology , Protozoan Proteins/chemistry , Protozoan Proteins/metabolism , Antimalarials/pharmacology , Cells, Cultured , DNA Polymerase III/genetics , DNA Polymerase III/isolation & purification , Drug Resistance , Erythrocytes/parasitology , Humans , Plasmodium falciparum/drug effects , Plasmodium falciparum/genetics , Proliferating Cell Nuclear Antigen/chemistry , Proliferating Cell Nuclear Antigen/genetics , Proliferating Cell Nuclear Antigen/isolation & purification , Proliferating Cell Nuclear Antigen/metabolism , Protozoan Proteins/genetics , Protozoan Proteins/isolation & purification , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...