Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Front Microbiol ; 14: 1113540, 2023.
Article in English | MEDLINE | ID: mdl-37065149

ABSTRACT

Marine environments and salty inland ecosystems encompass various environmental conditions, such as extremes of temperature, salinity, pH, pressure, altitude, dry conditions, and nutrient scarcity. The extremely halophilic archaea (also called haloarchaea) are a group of microorganisms requiring high salt concentrations (2-6 M NaCl) for optimal growth. Haloarchaea have different metabolic adaptations to withstand these extreme conditions. Among the adaptations, several vesicles, granules, primary and secondary metabolites are produced that are highly significant in biotechnology, such as carotenoids, halocins, enzymes, and granules of polyhydroxyalkanoates (PHAs). Among halophilic enzymes, reductases play a significant role in the textile industry and the degradation of hydrocarbon compounds. Enzymes like dehydrogenases, glycosyl hydrolases, lipases, esterases, and proteases can also be used in several industrial procedures. More recently, several studies stated that carotenoids, gas vacuoles, and liposomes produced by haloarchaea have specific applications in medicine and pharmacy. Additionally, the production of biodegradable and biocompatible polymers by haloarchaea to store carbon makes them potent candidates to be used as cell factories in the industrial production of bioplastics. Furthermore, some haloarchaeal species can synthesize nanoparticles during heavy metal detoxification, thus shedding light on a new approach to producing nanoparticles on a large scale. Recent studies also highlight that exopolysaccharides from haloarchaea can bind the SARS-CoV-2 spike protein. This review explores the potential of haloarchaea in the industry and biotechnology as cellular factories to upscale the production of diverse bioactive compounds.

2.
Curr Microbiol ; 79(9): 266, 2022 Jul 26.
Article in English | MEDLINE | ID: mdl-35881211

ABSTRACT

The biosynthesis of nanoparticles (NPs) has gained an overwhelming interest due to their biological applications. However, NPs synthesis by pigmented extreme halophiles remains underexplored. The NPs synthesis using pigmented halophiles is inexpensive and less toxic than other processes. In this study, pigmented halophilic microorganisms (n = 77) were screened to synthesize silver chloride nanoparticles (AgCl-NPs) with silver nitrate as metal precursors, and their biological applications were assessed. The synthesis of AgCl-NPs was possible using the crude extract from cellular lysis (CECL) of six extreme halophiles. Two of the AgCl-NPs viz. AK2-NPs and MY6-NPs synthesized by the CECL of Haloferax alexandrinus RK_AK2 and Haloferax lucentense RK_MY6, respectively, exhibited antimicrobial, antioxidative, and anti-inflammatory activities. The surface plasmon resonance of the AgCl-NPs was determined with UV spectroscopy. XRD analysis of AK2-NPs and MY6-NPs confirmed the presence of silver in the form of chlorargyrite (silver chloride) having a cubic structure. The crystallite size of AK2-NPs and MY6-NPs, estimated with the Scherrer formula, was 115.81 nm and 137.50 nm. FTIR analysis verified the presence of diverse functional groups. Dynamic light-scattering analysis confirmed that the average size distribution of NPs was 71.02 nm and 117.36 nm for AK2-NPs and MY6-NPs, respectively, with monodisperse nature. The functional group in 1623-1641 cm-1 indicated the presence of protein ß-sheet structure and shifting of amino and hydroxyl groups from the pigmented CECL, which helps in capping and stabilizing nanoparticles. The study provides evidence that CECL of Haloferax species can rapidly synthesize NPs with unique characteristics and biological applications.


Subject(s)
Halobacteriales , Metal Nanoparticles , Anti-Bacterial Agents/metabolism , Chlorides/pharmacology , Halobacteriales/metabolism , Metal Nanoparticles/chemistry , Plant Extracts , Silver Compounds/chemistry , Silver Compounds/metabolism , Spectroscopy, Fourier Transform Infrared
3.
Appl Microbiol Biotechnol ; 106(5-6): 1813-1835, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35254498

ABSTRACT

Microbial enzymes have an indispensable role in producing foods, pharmaceuticals, and other commercial goods. Many novel enzymes have been reported from all domains of life, such as plants, microbes, and animals. Nonetheless, industrially desirable enzymes of microbial origin are limited. This review article discusses the classifications, applications, sources, and challenges of most demanded industrial enzymes such as pectinases, cellulase, lipase, and protease. In addition, the production of novel enzymes through protein engineering technologies such as directed evolution, rational, and de novo design, for the improvement of existing industrial enzymes is also explored. We have also explored the role of metagenomics, nanotechnology, OMICs, and machine learning approaches in the bioprospecting of novel enzymes. Overall, this review covers the basics of biocatalysts in industrial and healthcare applications and provides an overview of existing microbial enzyme optimization tools. KEY POINTS: • Microbial bioactive molecules are vital for therapeutic and industrial applications. • High-throughput OMIC is the most proficient approach for novel enzyme discovery. • Comprehensive databases and efficient machine learning models are the need of the hour to fast forward de novo enzyme design and discovery.


Subject(s)
Bacteria , Bioprospecting , Enzymes , Fungi , Protein Engineering , Animals , Bacteria/enzymology , Biotechnology , Enzymes/metabolism , Fungi/enzymology , Health Care Sector , Industry , Metagenomics
4.
Mar Drugs ; 19(8)2021 Jul 31.
Article in English | MEDLINE | ID: mdl-34436281

ABSTRACT

This study presents a comparative analysis of halophiles from the global open sea and coastal biosystems through shotgun metagenomes (n = 209) retrieved from public repositories. The open sea was significantly enriched with Prochlorococcus and Candidatus pelagibacter. Meanwhile, coastal biosystems were dominated by Marinobacter and Alcanivorax. Halophilic archaea Haloarcula and Haloquandratum, predominant in the coastal biosystem, were significantly (p < 0.05) enriched in coastal biosystems compared to the open sea. Analysis of whole genomes (n = 23,540), retrieved from EzBioCloud, detected crtI in 64.66% of genomes, while cruF was observed in 1.69% Bacteria and 40.75% Archaea. We further confirmed the viability and carotenoid pigment production by pure culture isolation (n = 1351) of extreme halophiles from sediments (n = 410 × 3) sampling at the Arabian coastline of India. All red-pigmented isolates were represented exclusively by Haloferax, resistant to saturated NaCl (6 M), and had >60% G + C content. Multidrug resistance to tetracycline, gentamicin, ampicillin, and chloramphenicol were also observed. Our study showed that coastal biosystems could be more suited for bioprospection of halophiles rather than the open sea.


Subject(s)
Carotenoids/metabolism , Halobacteriales/genetics , Haloferax/genetics , Aquatic Organisms , Halobacteriales/metabolism , Haloferax/metabolism , Humans , India , Oceans and Seas , Phylogeny , Phytotherapy
5.
Microb Pathog ; 157: 105007, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34044052

ABSTRACT

Screening of halophiles with antimicrobial activity in saltpan soil samples from Nagapattinam district, Tamil Nadu, revealed isolate VE-2 as the most potent, identified as Bacillus firmus strain VE-2 through 16s rRNA gene sequencing. It had an optimum growth condition (OD 3.1) and antimicrobial protein (AMP) production (450 µg/mL) at 37 °C, pH 8, 25% NaCl, and 36 h incubation. SDS-PAGE analysis of the purified AMP showed the molecular weight of 36 kDa. HPLC analysis of the purified AMP showed different amino acids, such as asparagines, alanine, lysine, proline, threonine, glycine, cysteine, serine, aspartic acid leucine, and valine. Further characterization and identification using FT-IR, 2D-PAGE, MALDI-TOF, and in-silico analysis showed that the isolated AMP had the highest similarity to Subtilisin-A. It showed antibacterial activity against clinical bacterial pathogens like S. aureus, S. pyogenes, C. diphtheria, E. coli, and P. aeruginosa with the minimum inhibitory concentration (MIC) and the minimum bactericidal concentration of 2.5 µg/mL and 20 µg/mL and also against various fungal pathogens such as A. niger, A. flavus, C. albicans, C. tropicalis and C. parapsilosis with the MIC and minimum fungicidal concentrations of 1.25-80 µg/mL. The purified AMP had excellent antioxidant potential, showed a scavenging effect against DPPH and Nitric oxide radicals, and displayed anticancer activity against HeLa cell lines with the IC50 values 53 µg/mL. Hence, the purified bioactive antimicrobial peptides (AMP) could also be used in anticancer therapies.


Subject(s)
Bacillus firmus , Subtilisin/pharmacology , Anti-Bacterial Agents/pharmacology , Escherichia coli , HeLa Cells , Humans , India , Microbial Sensitivity Tests , RNA, Ribosomal, 16S/genetics , Spectroscopy, Fourier Transform Infrared , Staphylococcus aureus
6.
Front Genet ; 11: 563975, 2020.
Article in English | MEDLINE | ID: mdl-33240317

ABSTRACT

A multitude of factors, such as drug misuse, lack of strong regulatory measures, improper sewage disposal, and low-quality medicine and medications, have been attributed to the emergence of drug resistant microbes. The emergence and outbreaks of multidrug resistance to last-line antibiotics has become quite common. This is further fueled by the slow rate of drug development and the lack of effective resistome surveillance systems. In this review, we provide insights into the recent advances made in computational approaches for the surveillance of antibiotic resistomes, as well as experimental formulation of combinatorial drugs. We explore the multiple roles of antibiotics in nature and the current status of combinatorial and adjuvant-based antibiotic treatments with nanoparticles, phytochemical, and other non-antibiotics based on synergetic effects. Furthermore, advancements in machine learning algorithms could also be applied to combat the spread of antibiotic resistance. Development of resistance to new antibiotics is quite rapid. Hence, we review the recent literature on discoveries of novel antibiotic resistant genes though shotgun and expression-based metagenomics. To decelerate the spread of antibiotic resistant genes, surveillance of the resistome is of utmost importance. Therefore, we discuss integrative applications of whole-genome sequencing and metagenomics together with machine learning models as a means for state-of-the-art surveillance of the antibiotic resistome. We further explore the interactions and negative effects between antibiotics and microbiomes upon drug administration.

7.
Sci Total Environ ; 743: 140699, 2020 Nov 15.
Article in English | MEDLINE | ID: mdl-32679495

ABSTRACT

Microbial communities perform crucial biogeochemical cycles in distinct ecosystems. Halophilic microbial communities are enriched in the saline areas. Hence, haloarchaea have been primarily studied in salterns and marine biosystems with the aim to harness haloarcheal carotenoids biosynthesis. In this study, sediment from several distinct biosystems (mangrove, seashore, estuary, river, lake, salt pan and island) across the Arabian coastal region of India were collected and analyzed though 16s rRNA metagenomic and whole genome approach to elucidated the dominant representative genre, haloarcheal diversity, and the prevalence of Crtl and CruF genes. We found that the microbial diversity in mangrove sediment (794 OTUs) was highest and lowest in lake and river (558-560 OTUs). Moreover, the bacterial domain dominated in all biosystems (96.00-99.45%). Top 10 abundant genera were involved in biochemical cycles such as sulfur, methane, ammonia, hydrocarbon degradation, and antibiotics production. The Archaea was mainly composed of Haloarchaea, Methanobacteria, Methanococci, Methanomicrobia and Crenarchaeota. Carotenoid gene, Crtl, was observed in a major portion (abundance 60%; diversity 45%) of microbial community. Interestingly, we found that all species under haloarcheal class that were represented in fresh as well as marine biosystems encodes CruF gene (bacterioruberin carotenoid). Our study demonstrates the high microbial diversity in various ecosystems, enrichment of Crtl gene, and also shows that Crtl and CruF genes are highly abundant in haloarcheal genera. The finding of ecosystems specific Crtl and CruF encoding genera opens up a promising area in bioprospecting the carotenoid derivatives from the wide range of natural biosystems.


Subject(s)
Archaea/genetics , Metagenome , Bacteria/genetics , Geologic Sediments , India , Phylogeny , RNA, Ribosomal, 16S
SELECTION OF CITATIONS
SEARCH DETAIL
...