Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Transl Psychiatry ; 12(1): 286, 2022 07 18.
Article in English | MEDLINE | ID: mdl-35851573

ABSTRACT

Cannabinoid CB1 receptors (CB1Rs) have been major targets in medication development for the treatment of substance use disorders. However, clinical trials with rimonabant, a CB1R antagonist/inverse agonist, failed due to severe side effects. Here, we evaluated the therapeutic potential of PIMSR, a neutral CB1R antagonist lacking an inverse agonist profile, against cocaine's behavioral effects in experimental animals. We found that systemic administration of PIMSR dose-dependently inhibited cocaine self-administration under fixed-ratio (FR5), but not FR1, reinforcement, shifted the cocaine self-administration dose-response curve downward, decreased incentive motivation to seek cocaine under progressive-ratio reinforcement, and reduced cue-induced reinstatement of cocaine seeking. PIMSR also inhibited oral sucrose self-administration. Importantly, PIMSR alone is neither rewarding nor aversive as assessed by place conditioning. We then used intracranial self-stimulation (ICSS) to explore the possible involvement of the mesolimbic dopamine system in PIMSR's action. We found that PIMSR dose-dependently attenuated cocaine-enhanced ICSS maintained by electrical stimulation of the medial forebrain bundle in rats. PIMSR itself failed to alter electrical ICSS, but dose-dependently inhibited ICSS maintained by optical stimulation of midbrain dopamine neurons in transgenic DAT-Cre mice, suggesting the involvement of dopamine-dependent mechanisms. Lastly, we examined the CB1R mechanisms underlying PIMSR's action. We found that PIMSR pretreatment attenuated Δ9-tetrahydrocannabinol (Δ9-THC)- or ACEA (a selective CB1R agonist)-induced reduction in optical ICSS. Together, our findings suggest that the neutral CB1R antagonist PIMSR deserves further research as a promising pharmacotherapeutic for cocaine use disorder.


Subject(s)
Cocaine , Substance-Related Disorders , Animals , Behavior, Animal , Cocaine/pharmacology , Conditioning, Operant/physiology , Dopamine , Dose-Response Relationship, Drug , Dronabinol/pharmacology , Mice , Rats , Receptor, Cannabinoid, CB1 , Self Administration
2.
Mol Psychiatry ; 27(4): 2171-2181, 2022 04.
Article in English | MEDLINE | ID: mdl-35064236

ABSTRACT

Ghrelin, an orexigenic hormone, has emerged as a critical biological substrate implicated in drug reward. However, the response of the ghrelin system to opioid-motivated behaviors and the role of ghrelin in oxycodone self-administration remain to be studied. Here, we investigated the reciprocal interactions between the endogenous ghrelin system and oxycodone self-administration behaviors in rats and the role of the ghrelin system in brain stimulation reward (BSR) driven by optogenetic stimulation of midbrain reward circuits in mice. Oxycodone self-administration significantly elevated plasma ghrelin, des-acyl ghrelin and growth hormone and showed no effect on plasma LEAP2, a newly identified endogenous ghrelin receptor (GHS-R1a) antagonist. Oxycodone self-administration produced significant decreases in plasma gastric inhibitory polypeptide and insulin. Acquisition of oxycodone self-administration significantly upregulated GHS-R1a mRNA levels in dopamine neurons in the ventral tegmental area (VTA), a brain region critical in drug reward. Pretreatment with JMV2959, a selective GHS-R1a antagonist, dose-dependently reduced oxycodone self-administration and decreased the breakpoint for oxycodone under a progressive ratio reinforcement in Long-Evans rats. The inhibitory effects of JMV2959 on oxycodone self-administration is selectively mediated by GHS-R1a as JMV2959 showed a similar effect in Wistar wildtype but not in GHS-R knockout rats. JMV2959 pretreatment significantly inhibited BSR driven by selective stimulation of VTA dopamine neurons, but not by stimulation of striatal GABA neurons projecting to the VTA in mice. These findings suggest that elevation of ghrelin signaling by oxycodone or oxycodone-associated stimuli is a causal process by which oxycodone motivates oxycodone drug-taking and targeting the ghrelin system may be a viable treatment approach for opioid use disorders.


Subject(s)
Ghrelin , Receptors, Ghrelin , Animals , Animals, Genetically Modified , Ghrelin/pharmacology , Mice , Oxycodone , Rats , Rats, Long-Evans , Rats, Wistar
3.
Neuropsychopharmacology ; 47(8): 1449-1460, 2022 07.
Article in English | MEDLINE | ID: mdl-34923576

ABSTRACT

Cocaine addiction is a significant medical and public concern. Despite decades of research effort, development of pharmacotherapy for cocaine use disorder remains largely unsuccessful. This may be partially due to insufficient understanding of the complex biological mechanisms involved in the pathophysiology of this disorder. In the present study, we show that: (1) elevation of ghrelin by cocaine plays a critical role in maintenance of cocaine self-administration and cocaine-seeking motivated by cocaine-conditioned stimuli; (2) acquisition of cocaine-taking behavior is associated with the acquisition of stimulatory effects of cocaine by cocaine-conditioned stimuli on ghrelin secretion, and with an upregulation of ghrelin receptor mRNA levels in the ventral tegmental area (VTA); (3) blockade of ghrelin signaling by pretreatment with JMV2959, a selective ghrelin receptor antagonist, dose-dependently inhibits reinstatement of cocaine-seeking triggered by either cocaine or yohimbine in behaviorally extinguished animals with a history of cocaine self-administration; (4) JMV2959 pretreatment also inhibits brain stimulation reward (BSR) and cocaine-potentiated BSR maintained by optogenetic stimulation of VTA dopamine neurons in DAT-Cre mice; (5) blockade of peripheral adrenergic ß1 receptors by atenolol potently attenuates the elevation in circulating ghrelin induced by cocaine and inhibits cocaine self-administration and cocaine reinstatement triggered by cocaine. These findings demonstrate that the endogenous ghrelin system plays an important role in cocaine-related addictive behaviors and suggest that manipulating and targeting this system may be viable for mitigating cocaine use disorder.


Subject(s)
Cocaine-Related Disorders , Cocaine , Adrenergic Agents/pharmacology , Adrenergic Agents/therapeutic use , Animals , Cocaine/pharmacology , Cocaine-Related Disorders/drug therapy , Ghrelin , Mice , Rats , Rats, Sprague-Dawley , Receptors, Ghrelin/therapeutic use , Self Administration , Ventral Tegmental Area
4.
Neuropsychopharmacology ; 46(4): 860-870, 2021 03.
Article in English | MEDLINE | ID: mdl-33069159

ABSTRACT

Cocaine abuse continues to be a serious health problem worldwide. Despite intense research, there is still no FDA-approved medication to treat cocaine use disorder (CUD). In this report, we explored the potential utility of beta-caryophyllene (BCP), an FDA-approved food additive for the treatment of CUD. We found that BCP, when administered intraperitoneally or intragastrically, dose-dependently attenuated cocaine self-administration, cocaine-conditioned place preference, and cocaine-primed reinstatement of drug seeking in rats. In contrast, BCP failed to alter food self-administration or cocaine-induced hyperactivity. It also failed to maintain self-administration in a drug substitution test, suggesting that BCP has no abuse potential. BCP was previously reported to be a selective CB2 receptor agonist. Unexpectedly, pharmacological blockade or genetic deletion of CB1, CB2, or GPR55 receptors in gene-knockout mice failed to alter BCP's action against cocaine self-administration, suggesting the involvement of non-CB1, non-CB2, and non-GPR55 receptor mechanisms. Furthermore, pharmacological blockade of µ opioid receptor or Toll-like receptors complex failed to alter, while blockade of peroxisome proliferator-activated receptors (PPARα, PPARγ) reversed BCP-induced reduction in cocaine self-administration, suggesting the involvement of PPARα and PPARγ in BCP's action. Finally, we used electrical and optogenetic intracranial self-stimulation (eICSS, oICSS) paradigms to study the underlying neural substrate mechanisms. We found that BCP is more effective in attenuation of cocaine-enhanced oICSS than eICSS, the former driven by optical activation of midbrain dopamine neurons in DAT-cre mice. These findings indicate that BCP may be useful for the treatment of CUD, likely by stimulation of PPARα and PPARγ in the mesolimbic system.


Subject(s)
Cocaine-Related Disorders , Cocaine , Animals , Behavior, Animal , Cocaine-Related Disorders/drug therapy , Dose-Response Relationship, Drug , Drug Repositioning , Food Additives/therapeutic use , Mice , PPAR alpha/therapeutic use , PPAR gamma , Polycyclic Sesquiterpenes , Rats , Receptors, Cannabinoid , Self Administration
5.
ACS Pharmacol Transl Sci ; 3(5): 907-920, 2020 Oct 09.
Article in English | MEDLINE | ID: mdl-33073190

ABSTRACT

IBNtxA (3-iodobenzoyl naltrexamine) is a novel µ-opioid receptor (MOR) agonist which is structurally related to the MOR antagonist naltrexone. Recent studies suggest IBNtxA preferentially signals through truncated MOR splice variants, resulting in anti-nociception with reduced side effects, including no conditioned place preference (CPP) when tested at a single dose. IBNtxA represents an intriguing lead compound for preclinical drug development targeting truncated MOR splice variants, but further evaluation of its in vivo pharmacological profile is necessary. The purpose of this study was to independently verify the antinociceptive properties of IBNtxA and to examine more completely the rewarding properties and discriminative stimulus effects of IBNtxA, allowing broader assessment of IBNtxA as a candidate for further medications development. A dose of 3 mg/kg IBNtxA was equipotent to 10 mg/kg morphine in a hot-plate analgesia assay. In drug discrimination testing using mice trained to discriminate between 3 mg/kg IBNtxA and vehicle, the κ-agonist U-50488 fully substituted for IBNtxA. MOR agonist morphine, δ-agonist SNC162, NOP agonist SCH 221510, and MOR/NOP partial agonist buprenorphine each partially substituted for IBNtxA. IBNtxA up to 3 mg/kg did not produce a place preference in CPP. Pretreatment with 3 mg/kg IBNtxA but not 1 mg/kg IBNtxA attenuated acquisition of place preference for 10 mg/kg morphine. A dose of 3 mg/kg IBNtxA attenuated morphine-induced hyperlocomotion but did not alter naloxone-precipitated morphine withdrawal. Overall, IBNtxA has a complicated opioid receptor pharmacology in vivo. These results indicate that IBNtxA produces potent anti-nociception and has low abuse liability, likely driven by substantial κ agonist signaling effects.

SELECTION OF CITATIONS
SEARCH DETAIL
...