Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 30(3): 3302-3315, 2022 Jan 31.
Article in English | MEDLINE | ID: mdl-35209591

ABSTRACT

Optical resonances in bipartite metal nanostructure lattices are more resilient to finite size-effects than equivalent unipartite lattices, but the complexities of their behaviour in non-ideal settings remain relatively unexplored. Here we investigate the quality factor and extinction efficiency of 1D Ag and Au unipartite and bipartite lattices. By modelling finite size lattices over a range of periods we show that the quality factor of Ag bipartite lattices is significantly better than unipartite lattices. This improvement is less pronounced for Au bipartite lattices. We also show that bipartite lattices are dramatically affected by structure size variations at scales that are typically seen in electron beam lithography fabrication in contrast to unipartite lattices, which are not as sensitive.

2.
Opt Express ; 20(6): 6412-20, 2012 Mar 12.
Article in English | MEDLINE | ID: mdl-22418523

ABSTRACT

We describe a technique for experimentally determining the spatial-frequency modulation transfer function for near-field super-resolution imaging systems and present such a modulation transfer function for a 20|40|20 nm poly(vinyl alcohol)~(PVA)|Silver|PVA superlens exposed to 365 nm wavelength (i-line) radiation through a 50-nm thick tungsten mask. An extensive spectral characterization is achieved from only two exposures, with transmission coefficients determined for spatial frequencies as high as 13 µm-1, corresponding to λ / 4.75. The resulting transfer function is in good agreement with analytical models that incorporate the effects of mask-superlens interactions.


Subject(s)
Algorithms , Computer-Aided Design , Lenses , Silver/chemistry , Equipment Design , Equipment Failure Analysis
3.
Opt Express ; 17(16): 14260-9, 2009 Aug 03.
Article in English | MEDLINE | ID: mdl-19654835

ABSTRACT

The use of transfer-matrix analyses for characterizing planar optical superlensing systems is studied here, and the simple model of the planar superlens as an isolated imaging element is shown to be defective in certain situations. These defects arise due to neglected interactions between the superlens and the spatially varying shadow masks that are normally used as scattering objects for imaging, and which are held in near-field proximity to the superlenses. An extended model is proposed that improves the accuracy of the transfer-matrix analysis, without adding significant complexity, by approximating the reflections from the shadow mask by those from a uniform metal layer. Results obtained using both forms of the transfer matrix model are compared to finite element models and two example superlenses, one with a silver monolayer and the other with three silver sublayers, are characterized. The modified transfer matrix model gives much better agreement in both cases.


Subject(s)
Algorithms , Computer-Aided Design , Lenses , Models, Theoretical , Computer Simulation , Equipment Design , Equipment Failure Analysis , Light , Scattering, Radiation
4.
J Opt Soc Am A Opt Image Sci Vis ; 25(4): 911-8, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18382490

ABSTRACT

In response to increasing interest in the area of subdiffraction-limited near-field imaging, the performance of several different realizable and theoretical superresolving silver-based lenses is simulated for a variety of different input object profiles. A computationally-efficient T-matrix technique is used to model the lenses, which consist of layers of silver with total width of 40 nm sandwiched between layers of polymethyl methacrylate and silicon dioxide. The lenses are exposed to nonperiodic bright- and dark-slit input patterns, with feature size varied between 1 nm and 2.5 microm. The performance of the lenses is characterized in terms of transfer function, contrast profile, error profile, and input-to-output correlation. It is shown that increasing the number of layers in a lens increases the lens' transmission coefficients at high spatial frequencies; however, this does not always lead to better imaging performance. The main reasons for this are lens-specific resonances that distort features at certain spatial frequencies, and the increased attenuation of the DC component of transmitted images, which reduces image fidelity, particularly for dark-line features. This suggests that, to achieve optimum results, the design of the superresolving lens system should take into account the characteristics of the images that it is expected to transmit.

SELECTION OF CITATIONS
SEARCH DETAIL
...