Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Rep ; 30(6): 1964-1981.e3, 2020 02 11.
Article in English | MEDLINE | ID: mdl-32049024

ABSTRACT

The laminar architecture of the mammalian neocortex depends on the orderly generation of distinct neuronal subtypes by apical radial glia (aRG) during embryogenesis. Here, we identify critical roles for the autism risk gene Foxp1 in maintaining aRG identity and gating the temporal competency for deep-layer neurogenesis. Early in development, aRG express high levels of Foxp1 mRNA and protein, which promote self-renewing cell divisions and deep-layer neuron production. Foxp1 levels subsequently decline during the transition to superficial-layer neurogenesis. Sustained Foxp1 expression impedes this transition, preserving a population of cells with aRG identity throughout development and extending the early neurogenic period into postnatal life. FOXP1 expression is further associated with the initial formation and expansion of basal RG (bRG) during human corticogenesis and can promote the formation of cells exhibiting characteristics of bRG when misexpressed in the mouse cortex. Together, these findings reveal broad functions for Foxp1 in cortical neurogenesis.


Subject(s)
Forkhead Transcription Factors/metabolism , Neural Stem Cells/metabolism , Repressor Proteins/metabolism , Animals , Cell Differentiation/physiology , Cell Self Renewal/physiology , Humans , Mice , Neural Stem Cells/cytology
2.
Proc Natl Acad Sci U S A ; 114(33): 8770-8775, 2017 08 15.
Article in English | MEDLINE | ID: mdl-28760994

ABSTRACT

Fibrils and oligomers are the aggregated protein agents of neuronal dysfunction in ALS diseases. Whereas we now know much about fibril architecture, atomic structures of disease-related oligomers have eluded determination. Here, we determine the corkscrew-like structure of a cytotoxic segment of superoxide dismutase 1 (SOD1) in its oligomeric state. Mutations that prevent formation of this structure eliminate cytotoxicity of the segment in isolation as well as cytotoxicity of the ALS-linked mutants of SOD1 in primary motor neurons and in a Danio rerio (zebrafish) model of ALS. Cytotoxicity assays suggest that toxicity is a property of soluble oligomers, and not large insoluble aggregates. Our work adds to evidence that the toxic oligomeric entities in protein aggregation diseases contain antiparallel, out-of-register ß-sheet structures and identifies a target for structure-based therapeutics in ALS.


Subject(s)
Amyotrophic Lateral Sclerosis/metabolism , Superoxide Dismutase-1/metabolism , Amyotrophic Lateral Sclerosis/genetics , Animals , Crystallography, X-Ray/methods , Mice , Motor Neurons/metabolism , Mutation/genetics , Protein Conformation, beta-Strand , Superoxide Dismutase-1/genetics
3.
Dev Cell ; 33(4): 373-87, 2015 May 26.
Article in English | MEDLINE | ID: mdl-25936505

ABSTRACT

Throughout the developing nervous system, neural stem and progenitor cells give rise to diverse classes of neurons and glia in a spatially and temporally coordinated manner. In the ventral spinal cord, much of this diversity emerges through the morphogen actions of Sonic hedgehog (Shh). Interpretation of the Shh gradient depends on both the amount of ligand and duration of exposure, but the mechanisms permitting prolonged responses to Shh are not well understood. We demonstrate that Notch signaling plays an essential role in this process, enabling neural progenitors to attain sufficiently high levels of Shh pathway activity needed to direct the ventral-most cell fates. Notch activity regulates subcellular localization of the Shh receptor Patched1, gating the translocation of the key effector Smoothened to primary cilia and its downstream signaling activities. These data reveal an unexpected role for Notch shaping the interpretation of the Shh morphogen gradient and influencing cell fate determination.


Subject(s)
Cell Differentiation , Cilia/physiology , Hedgehog Proteins/metabolism , Neural Stem Cells/metabolism , Neurogenesis/physiology , Receptors, Notch/metabolism , Stem Cells/metabolism , Animals , Blotting, Western , Cells, Cultured , Embryo, Mammalian/cytology , Embryo, Mammalian/metabolism , Fibroblasts/cytology , Fibroblasts/metabolism , Fluorescent Antibody Technique , Mice , Mice, Transgenic , Neuroglia/cytology , Neuroglia/metabolism , Patched Receptors , Patched-1 Receptor , Receptors, Cell Surface/metabolism , Receptors, G-Protein-Coupled/metabolism , Signal Transduction , Smoothened Receptor , Spinal Cord/cytology , Spinal Cord/metabolism
4.
Adv Biol Chem ; 5(7)2015.
Article in English | MEDLINE | ID: mdl-27092291

ABSTRACT

During Nucleotide Excision Repair (NER) in the yeast S. cerevisiae, ubiquitylation of Rad4 is carried out by the E3 ubiquitin ligase that includes Rad7-Elc1-Cul3 and is critical to optimal NER. Rad7 E3 activity targets Rad4 for degradation by the proteaseome but, in principle, could also trigger other DNA damage responses. We observed increased nuclear ubiquitin foci (Ub-RFP) formation in S. cerevisiae containing a Rad7 E3 ligase mutant (rad7SOCS) in response to DNA damage by benzo[a]pyrenediolepoxide (BPDE) in dividing cells. Immunoblots reveal that ubiquitin conjugates of Rpn10 and Dsk2 accumulate in greater abundance in rad7SOCS compared to RAD7 in dividing cells in response to BPDE which makes Rpn10 and Dsk2 candidates for being the ubiquitylated species observed in our microscopy experiments. Microscopy analysis with strains containing Dsk2-GFP shows that Dsk2-GFP and Dsk2-GFP/Ub-RFP colocalized in nuclear foci form to an increased extent in a rad7SOCS mutant background in dividing cells than in a RAD7 wild-type strain. Further, Dsk2-GFP in the rad7SOCS strain formed more foci at the plasma membrane following BPDE treatment in dividing cells relative to strains containing RAD7 or a rad7Δ deletion mutant. In response to a different agent, UV irradiation, levels of ubiquitylated proteins were increased in rad7SOCS relative to RAD7, and the proteasomal deubiquitylase subunit, Rpn11 was even monoubiquitylated in the absence of damaging agents. Together these data show that Rad7 E3 activity attenuates ubiquitylation of proteins regulating the shuttling of polyubiquitylated proteins to the proteasome (Dsk2 and Rpn10) and removal of ubiquitin chains just prior to degradation (Rpn11). Since Rad7 E3 ligase activity has been shown to increase ubiquitylation of its target proteins, yet our results show increased ubiquitylation in the absence of Rad7 E3, we suggest that Rad7 E3 action regulates ubiquitin ligase and deubiquitylase (DUB) activities that act on Rpn10, Dsk2 and Rpn11.

5.
Nucleic Acids Res ; 37(19): 6429-38, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19729509

ABSTRACT

In the yeast Saccharomyces cerevisiae, the Rad1-Rad10 protein complex participates in nucleotide excision repair (NER) and homologous recombination (HR). During HR, the Rad1-Rad10 endonuclease cleaves 3' branches of DNA and aberrant 3' DNA ends that are refractory to other 3' processing enzymes. Here we show that yeast strains expressing fluorescently labeled Rad10 protein (Rad10-YFP) form foci in response to double-strand breaks (DSBs) induced by a site-specific restriction enzyme, I-SceI or by ionizing radiation (IR). Additionally, for endonuclease-induced DSBs, Rad10-YFP localization to DSB sites depends on both RAD51 and RAD52, but not MRE11 while IR-induced breaks do not require RAD51. Finally, Rad10-YFP colocalizes with Rad51-CFP and with Rad52-CFP at DSB sites, indicating a temporal overlap of Rad52, Rad51 and Rad10 functions at DSBs. These observations are consistent with a putative role of Rad10 protein in excising overhanging DNA ends after homology searching and refine the potential role(s) of the Rad1-Rad10 complex in DSB repair in yeast.


Subject(s)
DNA Breaks, Double-Stranded , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/genetics , Single-Strand Specific DNA and RNA Endonucleases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...