Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Mult Scler Relat Disord ; 57: 103422, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34871858

ABSTRACT

We characterized the frequency of diffusely abnormal white matter (DAWM) across a broad spectrum of multiple sclerosis (MS) participants. 35% of clinically isolated syndrome (CIS), 57% of relapsing remitting and 64% of secondary progressive MS participants demonstrated DAWM. CIS with DAWM had decreased cortical thickness, higher lesion load and a higher concentration of serum neurofilament light chain compared to CIS without DAWM. DAWM may be useful in identifying CIS patients with greater injury to their brains. Larger and longitudinal studies are warranted.


Subject(s)
Multiple Sclerosis, Relapsing-Remitting , Multiple Sclerosis , White Matter , Brain/diagnostic imaging , Humans , Intermediate Filaments , Magnetic Resonance Imaging , Multiple Sclerosis, Relapsing-Remitting/diagnostic imaging , White Matter/diagnostic imaging
2.
J Neurol Sci ; 276(1-2): 49-53, 2009 Jan 15.
Article in English | MEDLINE | ID: mdl-18822435

ABSTRACT

Multiple sclerosis (MS) is characterised by focal areas that undergo cycles of demyelination and remyelination. Although conventional magnetic resonance imaging is very effective in localising areas of damage, these techniques are not pathology specific. A newer technique, T(2) relaxation, can separate water from brain into three compartments: (1) a long T(2) component (>2 s) arising from CSF, (2) an intermediate T(2) component (~80 ms) attributed to intra- and extra-cellular water and (3) a short T(2) component (~20 ms) assigned to water trapped in between the myelin bilayers (termed myelin water). Histological evidence shows that myelin water is a specific marker of myelination. The goal of this work was to follow changes in total water content (WC) and myelin water fraction (MWF) in evolving MS lesions over one year. Multi-echo T(2) relaxation data was collected and used to measure water content and myelin water fraction from three new MS lesions in two patients. WC increased in the three large (>1 cm(3)) lesions at lesion appearance and remained elevated in the central core. Two lesions showed low MWF in the core suggesting demyelination upon first appearance. At later time points, one lesion showed a decrease in volume of low MWF, reflecting remyelination whereas the volume of low MWF in the other lesion core remained constant. This work provides evidence that MWF and WC can monitor demyelination and remyelination in MS.


Subject(s)
Multiple Sclerosis/metabolism , Multiple Sclerosis/pathology , Myelin Sheath/chemistry , Water/metabolism , Adult , Echo-Planar Imaging/methods , Female , Humans , Image Processing, Computer-Assisted/methods , Longitudinal Studies , Middle Aged
3.
Neuroimaging Clin N Am ; 19(1): 1-26, 2009 Feb.
Article in English | MEDLINE | ID: mdl-19064196

ABSTRACT

This article provides an overview of relaxation times and their application to normal brain and brain and cord affected by multiple sclerosis. The goal is to provide readers with an intuitive understanding of what influences relaxation times, how relaxation times can be accurately measured, and how they provide specific information about the pathology of MS. The article summarizes significant results from relaxation time studies in the normal human brain and cord and from people who have multiple sclerosis. It also reports on studies that have compared relaxation time results with results from other MR techniques.


Subject(s)
Magnetic Resonance Imaging/methods , Multiple Sclerosis/pathology , Brain/pathology , Brain Mapping/methods , Humans , Spinal Cord/pathology , Time
4.
J Neurol ; 255(11): 1802-11, 2008 Nov.
Article in English | MEDLINE | ID: mdl-18821049

ABSTRACT

"Dirty-appearing white matter" (DAWM) in multiple sclerosis (MS) is defined as a region(s) with ill-defined borders of intermediate signal intensity between that of normal-appearing white matter (NAWM) and that of plaque on T(2)-weighted and proton density imaging. To delineate the histopathology of DAWM, four formalin-fixed cerebral hemisphere slices of three MS patients with DAWM were scanned with T(2)- weighted and proton density sequences. The myelin water fraction (MWF) was obtained by expressing the short T(2) component as a fraction of the total T(2) distribution. Hemispheric sections were then stained with Luxol fast blue (LFB) for myelin phospholipids, for myelin basic protein (MBP) and 2',3'-cyclic nucleotide 3'-phosphohydrolase (CNP) for myelin; Bielschowsky silver impregnation for axons; and for glial fibrillary acidic protein (GFAP) for astrocytes. Compared to NAWM, DAWM showed reduction in MWF, corresponding to a reduction of LFB staining. DAWM also showed reduced Bielschowsky staining. Quantitatively, the change in MWF in DAWM most consistently correlated with the change in LFB staining. The findings of this preliminary study suggest that DAWM is characterized by loss of myelin phospholipids, detected by the short T(2) component, and axonal reduction.


Subject(s)
Brain/pathology , Multiple Sclerosis/pathology , 2',3'-Cyclic-Nucleotide Phosphodiesterases , Aged , Astrocytes/pathology , Female , Glial Fibrillary Acidic Protein , Humans , Indoles , Male , Middle Aged , Myelin Proteins/metabolism , Nerve Degeneration/pathology , Neurons/physiology , Neurons/ultrastructure , Phospholipids/metabolism
5.
J Neurol ; 254(12): 1653-9, 2007 Dec.
Article in English | MEDLINE | ID: mdl-17934875

ABSTRACT

BACKGROUND: Chronic T(1) hypointense lesions in multiple sclerosis (MS) are areas of severe tissue destruction. The purpose of this study was to compare total water content (WC),myelin water content (MWC), magnetization transfer ratio (MTR), T(1) relaxation time (T(1)), mean T(2) relaxation time (GMT(2)) between stable MS lesions that are hypointense and isointense on T(1)-weighted images. METHODS: Six MS patients were scanned five times over one year. WC, MWC, MTR, T(1) and GMT(2) were calculated for 15 isointense and 15 hypointense chronically stable T(1) lesions, as well as contralateral normal appearing white matter (NAWM). RESULTS: All MR measurements from both iso- and hypointense stable lesion types were significantly different from NAWM. WC, T(1) and GMT(2) were significantly higher and MTR significantly lower in hypointense T(1) lesions compared to isointense lesions. MWC was not significantly different between iso- and hypointense lesions. CONCLUSIONS: This work suggests that myelin loss occurs equally in both the chronic isointense and hypointense lesions but hypointense lesions are distinguished by increased extracellular water.


Subject(s)
Brain/pathology , Magnetic Resonance Imaging/methods , Multiple Sclerosis/metabolism , Multiple Sclerosis/pathology , Myelin Sheath/metabolism , Adult , Brain Mapping , Female , Humans , Male , Middle Aged , Sensitivity and Specificity , Water/metabolism
6.
Mult Scler ; 12(6): 747-53, 2006 Dec.
Article in English | MEDLINE | ID: mdl-17263002

ABSTRACT

Various magnetic resonance (MR) techniques are used to study the pathological evolution of demyelinating diseases, such as multiple sclerosis (MS). However, few studies have validated MR derived measurements with histopathology. Here, we determine the correlation of myelin water imaging, an MR measure of myelin content, with quantitative histopathologic measures of myelin density. The multi-component T2 distribution of water was determined from 25 formalin-fixed MS brain samples using a multi-echo T2 relaxation MR experiment. The myelin water fraction (MWF), defined as T2 signal below 30 milliseconds divided by the total signal, was determined for various regions of interest and compared to Luxol fast blue (myelin stain) mean optical density (OD) for each sample. MWF had a strong correlation with myelin stain [mean (range) R2 = 0.67 (0.45-0.92)], validating MWF as a measure of myelin density. This quantitative technique has many practical applications for the in vivo monitoring of demyelination and remyelination in a variety of disorders of myelin.


Subject(s)
Echo-Planar Imaging/standards , Multiple Sclerosis, Chronic Progressive/pathology , Myelin Sheath/pathology , Water/metabolism , Adult , Aged , Aged, 80 and over , Biomarkers , Demyelinating Diseases/metabolism , Demyelinating Diseases/pathology , Female , Fixatives , Formaldehyde , Humans , Male , Middle Aged , Multiple Sclerosis, Chronic Progressive/metabolism , Myelin Sheath/metabolism , Tissue Preservation
7.
J Neurol ; 251(3): 284-93, 2004 Mar.
Article in English | MEDLINE | ID: mdl-15015007

ABSTRACT

BACKGROUND: Measurements of the T2 decay curve provide estimates of total water content and myelin water fraction in white matter in-vivo, which may help in understanding the pathological progression of multiple sclerosis (MS). METHODS: Thirty-three MS patients (24 relapsing remitting, 8 secondary progressive, 1 primary progressive) and 18 controls underwent MR examinations. T2 relaxation data were acquired using a 32-echo measurement. All controls and 18 of the 33 MS patients were scanned in the transverse plane through the genu and splenium of the corpus callosum. Five white matter and 6 grey matter structures were outlined in each of these subjects. The remaining 15 MS patients were scanned in other transverse planes. A total of 189 lesions were outlined in the MS patients. Water content and myelin water fraction were calculated for all regions of interest and all lesions. RESULTS: The normal appearing white matter (NAWM) water content was, on average, 2.2% greater than that from controls, with significant differences occurring in the posterior internal capsules, genu and splenium of the corpus callosum, minor forceps and major forceps (p<0.0006). On average, MS lesions had 6.3% higher water content than contralateral NAWM (p<0.0001). Myelin water fraction was 16% lower in NAWM than for controls, with significant differences in the major and minor forceps, internal capsules, and splenium (p<0.05). The myelin water fraction of MS lesions averaged 52 % that of NAWM. CONCLUSIONS: NAWM in MS has a higher water content and lower myelin water fraction than control white matter. The cause of the myelin water fraction decrease in NAWM could potentially be due to either diffuse edema, inflammation, demyelination or any combination of these features. We present a simple model which suggests that myelin loss is the dominant feature of NAWM pathology.


Subject(s)
Echo-Planar Imaging/methods , Multiple Sclerosis/pathology , Myelin Sheath/chemistry , Water/analysis , Adult , Brain/pathology , Female , Humans , Male , Middle Aged , Models, Neurological
SELECTION OF CITATIONS
SEARCH DETAIL
...