Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 4976, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38862520

ABSTRACT

Twisted gastrulation (TWSG1) is an evolutionarily conserved secreted glycoprotein which controls signaling by Bone Morphogenetic Proteins (BMPs). TWSG1 binds BMPs and their antagonist Chordin to control BMP signaling during embryonic development, kidney regeneration and cancer. We report crystal structures of TWSG1 alone and in complex with a BMP ligand, Growth Differentiation Factor 5. TWSG1 is composed of two distinct, disulfide-rich domains. The TWSG1 N-terminal domain occupies the BMP type 1 receptor binding site on BMPs, whereas the C-terminal domain binds to a Chordin family member. We show that TWSG1 inhibits BMP function in cellular signaling assays and mouse colon organoids. This inhibitory function is abolished in a TWSG1 mutant that cannot bind BMPs. The same mutation in the Drosophila TWSG1 ortholog Tsg fails to mediate BMP gradient formation required for dorsal-ventral axis patterning of the early embryo. Our studies reveal the evolutionarily conserved mechanism of BMP signaling inhibition by TWSG1.


Subject(s)
Bone Morphogenetic Proteins , Signal Transduction , Animals , Bone Morphogenetic Proteins/metabolism , Bone Morphogenetic Proteins/genetics , Mice , Humans , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/chemistry , Glycoproteins/metabolism , Glycoproteins/genetics , Intercellular Signaling Peptides and Proteins/metabolism , Intercellular Signaling Peptides and Proteins/genetics , Binding Sites , Protein Domains , Protein Binding , Organoids/metabolism , Organoids/embryology , HEK293 Cells , Gastrulation/genetics , Mutation , Crystallography, X-Ray , Drosophila melanogaster/embryology , Drosophila melanogaster/metabolism , Drosophila melanogaster/genetics , Proteins
2.
Nat Commun ; 13(1): 4071, 2022 07 13.
Article in English | MEDLINE | ID: mdl-35831302

ABSTRACT

Leishmania are unicellular parasites that cause human and animal diseases. Like other kinetoplastids, they possess large transcriptional start regions (TSRs) which are defined by histone variants and histone lysine acetylation. Cellular interpretation of these chromatin marks is not well understood. Eight bromodomain factors, the reader modules for acetyl-lysine, are found across Leishmania genomes. Using L. mexicana, Cas9-driven gene deletions indicate that BDF1-5 are essential for promastigotes. Dimerisable, split Cre recombinase (DiCre)-inducible gene deletion of BDF5 show it is essential for both promastigotes and murine infection. ChIP-seq identifies BDF5 as enriched at TSRs. XL-BioID proximity proteomics shows the BDF5 landscape is enriched for BDFs, HAT2, proteins involved in transcriptional activity, and RNA processing; revealing a Conserved Regulators of Kinetoplastid Transcription (CRKT) Complex. Inducible deletion of BDF5 causes global reduction in RNA polymerase II transcription. Our results indicate the requirement of Leishmania to interpret histone acetylation marks through the bromodomain-enriched CRKT complex for normal gene expression and cellular viability.


Subject(s)
Leishmania , Acetylation , Animals , Factor V/metabolism , Histones/genetics , Histones/metabolism , Humans , Leishmania/genetics , Leishmania/metabolism , Lysine/metabolism , Mice
3.
Adv Mater ; 34(22): e2101784, 2022 Jun.
Article in English | MEDLINE | ID: mdl-34396598

ABSTRACT

A blend of a low-optical-gap diketopyrrolopyrrole polymer and a fullerene derivative, with near-zero driving force for electron transfer, is investigated. Using femtosecond transient absorption and electroabsorption spectroscopy, the charge transfer (CT) and recombination dynamics as well as the early-time transport are quantified. Electron transfer is ultrafast, consistent with a Marcus-Levich-Jortner description. However, significant charge recombination and unusually short excited (S1 ) and CT state lifetimes (≈14 ps) are observed. At low S1 -CT offset, a short S1 lifetime mediates charge recombination because: i) back-transfer from the CT to the S1 state followed by S1 recombination occurs and ii) additional S1 -CT hybridization decreases the CT lifetime. Both effects are confirmed by density functional theory calculations. In addition, relatively slow (tens of picoseconds) dissociation of charges from the CT state is observed, due to low local charge mobility. Simulations using a four-state kinetic model entailing the effects of energetic disorder reveal that the free charge yield can be increased from the observed 12% to 60% by increasing the S1 and CT lifetimes to 150 ps. Alternatively, decreasing the interfacial CT state disorder while increasing bulk disorder of free charges enhances the yield to 65% in spite of the short lifetimes.

4.
Nano Lett ; 21(13): 5516-5521, 2021 07 14.
Article in English | MEDLINE | ID: mdl-34228455

ABSTRACT

We present the discovery of a charge density wave (CDW) ground state in heavily electron-doped molybdenum disulfide (MoS2). This is the first observation of a CDW in any d2 (column 6) transition metal dichalcogenide (TMD). The band structure of MoS2 is distinct from the d0 and d1 TMDs in which CDWs have been previously observed, facilitating new insight into CDW formation. We demonstrate a metal-insulator transition at 85 K, a 25 meV gap at the Fermi level, and two distinct CDW modulations, (2√3 × 2√3) R30° and 2 × 2, attributable to Fermi surface nesting (FSN) and electron-phonon coupling (EPC), respectively. This simultaneous exhibition of FSN and EPC CDW modulations is unique among observations of CDW ground states, and we discuss this in the context of band folding. Our observations provide a route toward the resolution of controversies surrounding the origin of CDW modulations in TMDs.


Subject(s)
Electrons , Molybdenum , Disulfides
5.
J Phys Chem Lett ; 11(14): 5610-5617, 2020 Jul 16.
Article in English | MEDLINE | ID: mdl-32564605

ABSTRACT

Elucidating the interplay between film morphology, photophysics, and device performance of bulk heterojunction (BHJ) organic photovoltaics remains challenging. Here, we use the well-defined morphology of vapor-deposited di-[4-(N,N-di-p-tolyl-amino)-phenyl]cyclohexane (TAPC):C60 blends to address charge generation and recombination by transient ultrafast spectroscopy. We gain relevant new insights to the functioning of dilute-donor (5% TAPC) fullerene-based BHJs compared to molecularly intermixed systems (50% TAPC). First, we show that intermolecular charge-transfer (CT) excitons in the C60 clusters of dilute BHJs rapidly localize to Frenkel excitons prior to dissociating at the donor:acceptor interface. Thus, both Frenkel and CT excitons generate photocurrent over the entire fullerene absorption range. Second, we selectively monitor interfacial and bulk C60 clusters via their electro-absorption, demonstrating an energetic gradient that assists free charge generation. Third, we identify a fast (<1 ns) recombination channel, whereby free electrons recombine with trapped holes on isolated TAPC molecules. This can harm the performance of dilute solar cells, unless the electrons are rapidly extracted in efficient devices.

6.
Nat Commun ; 11(1): 833, 2020 Feb 11.
Article in English | MEDLINE | ID: mdl-32047157

ABSTRACT

Organic photovoltaics based on non-fullerene acceptors (NFAs) show record efficiency of 16 to 17% and increased photovoltage owing to the low driving force for interfacial charge-transfer. However, the low driving force potentially slows down charge generation, leading to a tradeoff between voltage and current. Here, we disentangle the intrinsic charge-transfer rates from morphology-dependent exciton diffusion for a series of polymer:NFA systems. Moreover, we establish the influence of the interfacial energetics on the electron and hole transfer rates separately. We demonstrate that charge-transfer timescales remain at a few hundred femtoseconds even at near-zero driving force, which is consistent with the rates predicted by Marcus theory in the normal region, at moderate electronic coupling and at low re-organization energy. Thus, in the design of highly efficient devices, the energy offset at the donor:acceptor interface can be minimized without jeopardizing the charge-transfer rate and without concerns about a current-voltage tradeoff.

7.
Proc Natl Acad Sci U S A ; 113(19): 5435-40, 2016 May 10.
Article in English | MEDLINE | ID: mdl-27114543

ABSTRACT

Metabolites of the kynurenine pathway (KP) of tryptophan (TRP) degradation have been closely linked to the pathogenesis of several neurodegenerative disorders. Recent work has highlighted the therapeutic potential of inhibiting two critical regulatory enzymes in this pathway-kynurenine-3-monooxygenase (KMO) and tryptophan-2,3-dioxygenase (TDO). Much evidence indicates that the efficacy of KMO inhibition arises from normalizing an imbalance between neurotoxic [3-hydroxykynurenine (3-HK); quinolinic acid (QUIN)] and neuroprotective [kynurenic acid (KYNA)] KP metabolites. However, it is not clear if TDO inhibition is protective via a similar mechanism or if this is instead due to increased levels of TRP-the substrate of TDO. Here, we find that increased levels of KYNA relative to 3-HK are likely central to the protection conferred by TDO inhibition in a fruit fly model of Huntington's disease and that TRP treatment strongly reduces neurodegeneration by shifting KP flux toward KYNA synthesis. In fly models of Alzheimer's and Parkinson's disease, we provide genetic evidence that inhibition of TDO or KMO improves locomotor performance and ameliorates shortened life span, as well as reducing neurodegeneration in Alzheimer's model flies. Critically, we find that treatment with a chemical TDO inhibitor is robustly protective in these models. Consequently, our work strongly supports targeting of the KP as a potential treatment strategy for several major neurodegenerative disorders and suggests that alterations in the levels of neuroactive KP metabolites could underlie several therapeutic benefits.


Subject(s)
Kynurenine/metabolism , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/prevention & control , Neuroprotective Agents/administration & dosage , Tryptophan Oxygenase/antagonists & inhibitors , Animals , Dose-Response Relationship, Drug , Drosophila , Neurodegenerative Diseases/pathology , Signal Transduction/drug effects , Treatment Outcome
8.
Front Physiol ; 5: 102, 2014.
Article in English | MEDLINE | ID: mdl-24772085

ABSTRACT

In the visual system of Drosophila melanogaster the retina photoreceptors form tetrad synapses with the first order interneurons, amacrine cells and glial cells in the first optic neuropil (lamina), in order to transmit photic and visual information to the brain. Using the specific antibodies against synaptic proteins; Bruchpilot (BRP), Synapsin (SYN), and Disc Large (DLG), the synapses in the distal lamina were specifically labeled. Then their abundance was measured as immunofluorescence intensity in flies held in light/dark (LD 12:12), constant darkness (DD), and after locomotor and light stimulation. Moreover, the levels of proteins (SYN and DLG), and mRNAs of the brp, syn, and dlg genes, were measured in the fly's head and brain, respectively. In the head we did not detect SYN and DLG oscillations. We found, however, that in the lamina, DLG oscillates in LD 12:12 and DD but SYN cycles only in DD. The abundance of all synaptic proteins was also changed in the lamina after locomotor and light stimulation. One hour locomotor stimulations at different time points in LD 12:12 affected the pattern of the daily rhythm of synaptic proteins. In turn, light stimulations in DD increased the level of all proteins studied. In the case of SYN, however, this effect was observed only after a short light pulse (15 min). In contrast to proteins studied in the lamina, the mRNA of brp, syn, and dlg genes in the brain was not cycling in LD 12:12 and DD, except the mRNA of dlg in LD 12:12. Our earlier results and obtained in the present study showed that the abundance of BRP, SYN and DLG in the distal lamina, at the tetrad synapses, is regulated by light and a circadian clock while locomotor stimulation affects their daily pattern of expression. The observed changes in the level of synaptic markers reflect the circadian plasticity of tetrad synapses regulated by the circadian clock and external inputs, both specific and unspecific for the visual system.

SELECTION OF CITATIONS
SEARCH DETAIL
...